首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足f(0)=1,f’(x)=f(x)+ax—a,求f(x),并求a的值,使曲线y= f(x)与x=0,y=0,x=1所围平面图形绕x轴旋转一周所得体积最小.
设f(x)在[0,1]上连续,且满足f(0)=1,f’(x)=f(x)+ax—a,求f(x),并求a的值,使曲线y= f(x)与x=0,y=0,x=1所围平面图形绕x轴旋转一周所得体积最小.
admin
2019-08-26
74
问题
设f(x)在[0,1]上连续,且满足f(0)=1,f’(x)=f(x)+ax—a,求f(x),并求a的值,使曲线y= f(x)与x=0,y=0,x=1所围平面图形绕x轴旋转一周所得体积最小.
选项
答案
[*] 由f (0)=l得C=l,所以f (x)=e
x
—ax. 旋转体的体积为 [*] 即a=3时,所求旋转体体积最小,此时f (x)=e
x
—3x.
解析
【思路探索】先解一阶微分方程,再求旋转体的体积,最后求最值即可.
【错例分析】求解一阶线性微分方程y’+p(x)y=q(x)时,不少同学将通解公式
,从而导致错误结果.
转载请注明原文地址:https://kaotiyun.com/show/vSJ4777K
0
考研数学三
相关试题推荐
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T线性表出,则a=__________.
已知a,b,c不全为零,证明方程组只有零解.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:常数k1,k2的值;
随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:(Ⅰ)U=XY的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fV(v).
求下列定积分:
箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个.现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数.(Ⅰ)求随机变量(X,Y)的概率分布;(Ⅱ)求Cov(X,Y).
(1999年)设函数f(x)连续,且已知f(1)=1,求∫12f(x)dx的值.
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4))T,β=(1,b,c)T.试问:当a,b,c满足什么条件时(1)β可由α1,α2,α3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)为正定二次型.
若向量组α1=(1-a,1,1)T,α2=(1,1,-a,1)T,α3=(1,1,1,-a)T线性无关,则实数a的取值范围是_______.
随机试题
A.渗透和滤过B.主动转运C.入胞作用D.单纯扩散氨基酸和葡萄糖在小肠的吸收机制为
A.手阳明大肠经B.足阳明胃经C.足太阳膀胱经D.手太阳小肠经E.足少阳胆经起于目内眦的经脉是
市政公用工程施工组织设计必须经( )批准。
甲公司是一家生产和销售钢铁的A股上市公司,其母公司为XYZ集团公司,甲公司为实现规模化经营、提升市场竞争力,多次通过资本市场融资成功进行了同行业并购,迅速扩大和提高了公司的生产能力和技术创新能力,奠定了公司在钢铁行业的地位,实现了跨越式发展,在一系列并购过
根据《旅行社条例实施细则》,旅行社在银行存人质量保证金的,应当设立独立账户,存期由旅行社确定,但不得少于()。
昨天冬冬和妞妞都病了,病症也类似。平日两人每天下午都在一起玩,因此,两人可能患的是同一种病,冬冬的病症有点像链球菌感染,但他患的肯定不是这种病。因此,妞妞患的病也肯定不是链球菌感染。以下哪项最为准确地概括了上述论证中的漏洞?
设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面说法中错误的是()。
被弗洛伊德描述为俄狄浦斯情节出现的阶段是在()。
Mostpeopleseeksomedegreeofinnerpeaceatwork,anditcanbedifficulttoobtain.Workisstressful,andmostofustendt
【S1】【S10】
最新回复
(
0
)