首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
假设批量生产的某种配件的内径X服从正态分布N(μ,σ2),今随机抽取16个配件,测得平均内径=3.05毫米,样本标准差s=0.4毫米,试求μ和σ2的90%置信区间.
admin
2017-08-18
76
问题
假设批量生产的某种配件的内径X服从正态分布N(μ,σ
2
),今随机抽取16个配件,测得平均内径
=3.05毫米,样本标准差s=0.4毫米,试求μ和σ
2
的90%置信区间.
选项
答案
这是一个正态总体的区间估计,由于σ
2
未知,关于μ的置信区间公式为 [*] 其中[*]满足P{|t(15)|>[*]}=0.1,查表可知t
0.05
(15)=1.753,于是置信度为90%关于μ的置信区间为 I=(3.05-[*]×1.753,3.05+[*]×1.753)=(2.87,3.23) μ未知关于σ
2
的置信区间公式为 [*] 其中[*](n一1)分别满足P{χ
2
(n-1)≥[*]}=0.05,P{χ
2
(n-1)≥1-[*]}=0.95, 查χ
2
分布上分位数表得χ
0.95
2
(15)=7.261, χ
0.05
2
(15)=24.996,于是置信度为90%关于σ
2
的置信区间为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vbr4777K
0
考研数学一
相关试题推荐
(2005年试题,18)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
(2008年试题,4)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
设X1,X2,…,Xn是取自总体X的一个简单随机样本,X的概率密度为若样本容量n=400,置信度为0.95,求θ的置信区间.
已知(X,Y)为一个二维随机变量,X1=X+2Y,X2=X一2Y(X1,X2)的概率密度为f(x1,x2)分别求出X和Y的密度函数;
已知曲线在直角坐标系中由参数方程给出:x=t+e-1,y=2t+e-2t(t≥0).证明y=y(x)在[1,+∞)单调上升且是凸的.
设总体X的概率密度为其中μ为未知参数,且X1,X2,…,Xn,是来自总体X的一个简单随机样本.验证为μ的无偏估计量.
(I)设f(x1,x2,x3)=x12+2x22+6x32一2x1x2+2x1x3—6x2x3,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定阵;(Ⅱ)设求可逆阵D,使A=DTD.
设随机变量X服从(0,θ)上的均匀分布,其中θ为未知参数,X1,X2,…,Xn为简单随机样本,求θ的最大似然估计量;
设A为m×n矩阵,且r(A)==r<n,其中.(Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解;(Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本,,则().
随机试题
对出生在一个月内的儿童需要进行家庭访视,访视包中的必备物品不包括
食物蛋白质生物学价值是指
根管充填的时机是
会阴侧切时可能损伤到的盆底肌肉是
近年来,我国大城市的卡拉OK厅数量正在增加。这表明,更多人倾向于选择走出家门进行娱乐活动。为使上述结论成立,以下哪项陈述必须为真?()
以下关于数字签名的描述中,错误的是()。
采用()需要较为详细的工程资料、建筑材料价格和工程费用指标,工作量较大。
背景资料:某施工单位通过招投标获得某三级公路D标段施工。该标段中有两处较大的路基土石方集中开挖。第一处位于K2+180~310处,地质条件主要为土质(局部路段属块石土);第二处位于K8+560~850处,上覆2~4m强风化泥质页岩,下面为砂岩和页岩的互层
ItissurprisinghowmanyexpressionsthatpeopleuseeverydaytamefromthecardgamepokerForex-ample,youheartheexpres
FromOurDarkestDay,OurBrightestHopeThatawfulSeptembermorning,whenjet-linersrainedfromthesky,andtheworstan
最新回复
(
0
)