首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3。 (Ⅰ)求二次型f的矩阵的所有特征值; (Ⅱ)若二次型f的规范形为y12+y22,求a的值。
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3。 (Ⅰ)求二次型f的矩阵的所有特征值; (Ⅱ)若二次型f的规范形为y12+y22,求a的值。
admin
2018-04-18
53
问题
设二次型f(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a一1)x
3
2
+2x
1
x
3
一2x
2
x
3
。
(Ⅰ)求二次型f的矩阵的所有特征值;
(Ⅱ)若二次型f的规范形为y
1
2
+y
2
2
,求a的值。
选项
答案
(Ⅰ)二次型f(x
1
,x
2
,x
3
)对应的实对称矩阵为A=[*], |λE一A|=[*] =(λ一a)[(λ—a)(λ一a+1)一1]一[0+(λ一a)] =(λ一a)[(λ一a)(λ一a+1)一2]=(λ一a)[λ
2
一2aλ+λ+a
2
一a一2] =(λ-a){λ+[*]}=(λ-a)(λ-a+2)(λ一a一1)。 则λ
1
=a,λ
2
=a一2,λ
3
=a+1。 (Ⅱ)方法一:若规范形为y
1
2
+y
2
2
,说明有两个特征值为正,一个为0。则由于a一2<a<a+1,所以a一2=0,即a=2。 方法二:由于f的规范形为y
1
2
+y
2
2
,所以A合同于[*],其秩为2,故|A|=λ
1
,λ
2
,λ
3
=0,于是a=0或a=一1或a=2。当a=0时,λ
1
=0,λ
2
=1,λ
3
=一2,此时f的规范形为y
1
2
-y
2
2
,不合题意。 当a=一1时,λ
1
=一1,λ
2
=0,λ
3
=一3,此时f的规范形为一y
1
2
-y
2
2
,不合题意。当a=2时,λ
1
=2,λ
2
=3,λ
3
=0,此时f的规范形为y
1
2
+y
2
2
。 综上可知,a=2。
解析
转载请注明原文地址:https://kaotiyun.com/show/xpX4777K
0
考研数学三
相关试题推荐
设f(x)=(1)证明f(x)是以π为周期的周期函数;(2)求f(x)的值域.
设有正项级数是它的部分和.(1)证明收敛;(2)判断级数是条件收敛还是绝对收敛,并给予证明.
证明:(1)对任意正整数n,都有成立;(2)设an=(n=1,2,…),证明{an}收敛.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,χ1,χ2是分别属于λ1和λ2的特征向量.证明:χ1+χ2不是A的特征向量.
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有()
设随机变量X1,X2,…,Xn相互独立,且Xi服从参数为λi的指数分布,其密度为求P{X1=min{X1,X2,…,Xn}}.
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为,求证:服从参数为15的t分布.
二次型f(x1,x2,x3)=5x12+5x22+cx32-2x1x2-6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
随机试题
结石性胆囊炎临床症状明显者的根本治疗方法应用
有关锐利度和模糊度的叙述,错误的是
下列穴位中,可治疗痔疮的是
A.左侧卧位B.坐位身体前倾C.仰卧位D.右侧卧位E.从卧位或下蹲位迅速站立下列疾病,听诊时采用上述哪种呼吸或体位,杂音最清晰
背景资料:某大型水利水电工程由政府投资兴建。项目法人委托某招标代理公司代理施工招标。招标代理公司依据有关规定确定该项目采用公开招标方式招标,招标公告在当地政府规定的招标信息网上发布。招标文件中规定:投标担保可采用投标保证金或投标保函方式担保。评标方法采用
各相关机关和单位在实施工程建设强制性标准的监督管理中的作用是()。
按照《建设工程质量管理条例》的规定,( )单位不得转包或者违法分包工程项目。
下面是天津、上海、北京、重庆四城市某日的天气预报。已知四城市有三种天气情况,天津和北京的天气相同,上海和重庆当天都没有雨,那么,以下判断不正确的是( )
一只蚂蚁发现了一只死螳螂,立刻回洞找来10只蚂蚁搬,搬不动;然后每只蚂蚁回去各找来10只蚂蚁,还是搬不动;于是每只蚂蚁又回去找来10个伙伴,大家齐心协力,终于把死螳螂拖回洞里。问一共有多少只蚂蚁参加了搬运?
MeaninginLiteratureI.AUTHOR—Interpretauthor’sintendedmeaningbya)Readingotherworksby【T1】_____【T1】______b)Knowingc
最新回复
(
0
)