首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
admin
2019-12-24
84
问题
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x
2
-2xy-4y
2
,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每吨还需支付排污费2万元。
当限制排污费用支出总和为6万元的情况下,这两种产品的产量各为多少时总利润最大?最大利润是多少?
选项
答案
求总利润函数L(x,y)在约束条件x+2y=6下的最大值,可用拉格朗日乘数法。引入拉格朗日函数 F(x,y,λ)=L(x,y)+λ(x+2y-6), 求F(x,Y,λ)的驻点,令 [*] 可解得唯一驻点x=2,y=2,且此时L(x,y)=28。 因驻点唯一,且实际问题必有最大利润,故计算结果表明,当排污费用限于6万元的情况下,两种产品的产量均为2吨时总利润最大,最大利润为28万元。
解析
转载请注明原文地址:https://kaotiyun.com/show/y1D4777K
0
考研数学三
相关试题推荐
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。(Ⅰ)求xTAx的表达式;(Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
设函数f(x)=则下列结论正确的是()。
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是()。
(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设ξ1=(2,一1,一1,)T和ξ2=(t,1一t,0,一1)T是4元齐次方程组(I)的一个基础解系,方程组(Ⅱ)为已知(I)和(Ⅱ)有公共的非零解,求p,t的值和全部公共解.
已知ξ1=(1,1,一1,一1)T和ξ2=(1,0,一1,0)T是线性方程组的解,η=(2,一2,1,1)T是它的导出组的解,求方程组的通解.
设A是n阶实反对称矩阵,证明E+A可逆.
设3阶矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解.求A.
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
随机试题
下列各组脉象中。平人可见的脉象是
强心苷治疗心衰的重要药理学基础是
除圆管涵和箱涵外,单孔跨径小于_________的泄水或通行的小型构造物是涵洞。()
细水雾灭火系统的特性主要有()。
日食与月食都是自然现象,日食、月食的成因只与日、地、月三个天体的几何位置有关。()
运行OSPF协议的路由器每10s向它的各个接口发送Hello分组,接收到该分组的路由器就知道了邻居的存在。为了避免路由信息被重复发送,需要给路由信息包编号。假设每秒钟传一次路由信息,为确保路由信息包的编号在一年内不重复使用,则编号的最短长度应为()
在Access数据库中,如果窗体上输入的数据总是取自表或查询中的字段数据,或者取自某固定内容的数据,可以使用【】控件。
接收并阅读由xuexq@mail.neea.edu.cn发来的E-mail,并将随信发来的附件以文件名dqsj.txt保存到考生文件夹下。
A、想散步B、想现在下车C、前面堵车了D、没拿到驾照B
Ourdecisiononwhethertoboostourlongorshortpositions_______onanychangeinthedirectionofthemarket,usuallydrive
最新回复
(
0
)