首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 α1=[2,-1,a+2,1]T, α2=[-1,2,4,a+8]T. 当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 α1=[2,-1,a+2,1]T, α2=[-1,2,4,a+8]T. 当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
admin
2019-08-06
107
问题
设四元齐次线性方程组(I)为
且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=[2,-1,a+2,1]
T
, α
2
=[-1,2,4,a+8]
T
.
当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
选项
答案
解一 将方程组(Ⅱ)的通解c
1
α
1
+c
2
α
2
代入方程组(I),为使c
1
α
1
+c
2
α
2
也是方程组(I)的解(从而是方程组(I)和方程组(Ⅱ)的公共解),c
1
,c
2
应满足的条件为 -(a+1)c
1
=0, (a+1)(c
1
-c
2
)=0. 于是当a+1≠0时,必有c
1
与c
2
为零,此时没有非零公共解. 当a+1=0即a=-1时,c
1
,c
2
为任何不全为零的实数,c
1
α
1
+c
2
α
2
都是非零公共解,从而方程组(I)和方程组(Ⅱ)有非零公共解,它们是 c
1
α
1
+c
2
α
2
=c
1
[2,-1,1,1]
T
+c
2
[-1,2,4,7]
T
, c
1
,c
2
不全为零. 解二 设方程组(I)与(Ⅱ)的公共解为η,则有数k
1
,k
2
,k
3
,k
4
,使得 η=k
1
β
1
+k
2
β
2
=k
3
α
1
+k
4
α
2
. ① 由此得方程组 [*] 对方程组(Ⅲ)的系数矩阵作初等行变换,得到 [*] 由此可知,当a≠-1时,秩(A)=4,方程组(Ⅲ)仅有零解,方程组(I)和方程组(Ⅱ)没有非零公共解. 当a=一1时,秩(A)=2<4,方程组(Ⅲ)有非零解,且其一个基础解系为 [k
1
,k
2
,k
3
,k
4
]
T
=c
1
[2,-1,1,0]
T
+c
2
[-1,2,0,1]
T
=[2c
1
-c
2
,2c
2
-c
1
,c
1
,c
2
]
T
, 故k
1
=2c
1
-c
2
,k
2
=2c
2
-c
1
,k
3
=c
1
,k
4
=c
2
(c
1
,c
2
不全为零).将其代入式①得到方程组(I) 和方程组(Ⅱ)的非零公共解为 η=k
1
β
1
+k
2
β
2
=k
3
α
1
+k
4
α
2
=[2c
1
-c
2
,2c
2
-c
1
,c
1
+4c
2
,c
1
+7c
2
]
T
(c
1
,c
2
不全为零).
解析
转载请注明原文地址:https://kaotiyun.com/show/zwJ4777K
0
考研数学三
相关试题推荐
从正态总体X~N(0,σ2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ2的无偏估计量的是().
设A为m×n阶实矩阵,且r(A)=N.证明:ATA的特征值全大于零.
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A*+3E|.
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
判别下列级数的敛散性.若收敛,需说明是绝对收敛还是条件收敛.
设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则
(1995年)已知连续函数f(x)满足条件求f(x).
随机试题
辩证唯物主义认识论区别于旧唯物主义认识论的基本观点是()
胆囊结石临床表现各异.主要取决于
A.胆酸B.别胆酸C.牛磺酸D.粪甾烷酸E.绿原酸
草酸钙簇晶甚多,簇晶排列成行的药材为
仲裁协议的特点包括( )。
会计分析的方法包括()。
以下有关我国地理常识的说法,错误的是()。
许多消费者在超级市场挑选食品时,往往喜欢挑选那些用透明材料包装的食品,其理由是透明包装可以直接看到包装内的食品,这样心里有一种安全感。以下哪项如果为真,最能对上述心理感受构成质疑?
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
IhaveavegetablegardenandeverysummerIenjoyeatingmyownvegetables.Onedaylastsummer1pickedadozencarrots.Usual
最新回复
(
0
)