首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是_________.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是_________.
admin
2019-07-17
77
问题
设A是秩为3的5×4矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,如果α
1
+α
2
+2α
3
=(2,0,0,0)
T
,3α
1
+α
2
=(2,4,6,8)
T
,则方程组Ax=b的通解是_________.
选项
答案
[*]
解析
由于r(A)=3,所以齐次方程组Ax=0的基础解系共有4一r(A)=4—3=1个向量,又因为(α
1
+α
2
+2α
3
)一(3α
1
+α
2
)=2(α
3
一α
1
)=(0,一4,一6,一8)
T
是Ax=0的解,因此其基础解系可以为(0,2,3,4)
T
,由A(α
1
+α
2
+2α
3
)=Aα
1
+Aα
2
+2Aα
3
=4b,可知
是方程组Ax=b的一个解,因此根据非齐次线性方程组的解的结构可知,其通解是
转载请注明原文地址:https://kaotiyun.com/show/06N4777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β1为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(2)设,求出可由两组向量同时线性表示的向量.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
设函数y=y(x)满足微分方程y"-3y’+2y=2ex,其图形在点(0,1)处的切线与曲线y=x2-x+1在该点处的切线重合,求函数y=y(x).
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(x)在(-∞,+∞)有一阶连续导数,且f(0)=0,f’’(0)存在.若求F’(x),并证明F’(x)在(-∞,+∞)连续.
设f(x)在x=0处存在四阶导数,又设则必有()
设f(u)具有连续的一阶导数,且当x>0,y>0时,,求z的表达式.
证明函数恒等式arctanx=,x∈(-1,1).
∫x2arctanxdx
随机试题
Allworkersshouldcarryouttheirnormaldutiesduringthesafetyinspectiontomorrow________otherwiseinstructed.
IcrossedtheToddRiverand________myboilingbodyinacoolpool.
通常选用四格表资料Fisher确切概率计算法的条件是
患者女性,30岁。不明原因发热十多天,检查发现肝脾肿大,外周血WBC数量明显增多,且出现幼稚细胞,则应进一步做
水位观测时,沿岸验潮站采用自记验潮仪、便携式验潮仪、水尺,其观测误差不得大于()。
人体测量基准面中,通过铅垂轴和横轴的平面及与其平行的所有平面都称为()。
可以不参加工程竣工验收的单位是()。
下列关于上交所科创板保荐人持续督导制度的表述正确的是()。
以下关于集团项目组是否需要了解组成部分注册会计师的陈述中,不恰当的是()。
同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同,其原因是参与这两种蛋白质合成的()。
最新回复
(
0
)