首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中 ①如果矩阵AB=E,则A可逆且A—1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
下列命题中 ①如果矩阵AB=E,则A可逆且A—1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
admin
2018-12-29
31
问题
下列命题中
①如果矩阵AB=E,则A可逆且A
—1
=B;
②如果n阶矩阵A,B满足(AB)
2
=E,则(BA)
2
=E;
③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;
④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。
正确的是( )
选项
A、①②。
B、①④。
C、②③。
D、②④。
答案
D
解析
如果A,B均为n阶矩阵,命题①当然正确,但是题中没有n阶矩阵这一条件,故①不正确。
例如
显然A不可逆。
若A,B为n阶矩阵,(AB)
2
=E,即(AB)(AB)=E,则可知A、B均可逆,于是ABA=B
—1
,从而BABA=E,即(BA)
2
=E。因此②正确。
若设
显然A,B都不可逆,但A+B=
可逆,可知③不正确。
由于A,B为均n阶不可逆矩阵,知|A|=|B|=0,且结合行列式乘法公式,有|AB|=|A ||B|=0,故AB必不可逆,因此④正确。
综上分析可知,故选D。
转载请注明原文地址:https://kaotiyun.com/show/0FM4777K
0
考研数学一
相关试题推荐
(91年)曲线
(97年)设a1=2,证明:
(98年)设矩阵是满秩的,则直线
(88年)在区间(0,1)中随机地取两个数,则事件“两数之和小于”的概率为_______.
已知随机变量X1和X2相互独立,且分别服从参数为λ1,λ2的泊松分布,已知P{X1+X2>0)=1-e-1,则E[(X1+X2)2]=________.
设平面区域D由直线x=1,y=及曲线x2+y2=1围成,则二重积分f(x,y)dxdy在极坐标下的二次积分为______.
设随机变量X与Y相互独立,且X的分布函数为FX(z),Y的概率分布为P{Y=0}P{Y=1}=,则Z=XY的分布函数FZ(z)为()
设偶函数f(x)的二阶导数f’’(x)在点x=0的一个邻域内连续,且f(0)=1.试证:级数绝对收敛.
假设随机变量X和Y独立同分布.P{X=0}=P{Y=0}=1-p,P{X=1}=P{Y=1)=p.随机变量问p取何值时,X和Z独立?这时X,Y,Z是否相互独立?
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)一g(x)=o((x一x0)2)(x→x0).
随机试题
常见的专一化战略形式有产品专一化、_______、_______、利基战略。
A、 B、 C、 D、 D
患者,女,20岁。腹痛腹胀伴低热乏力7个月余。查体:腹部稍膨隆,腹壁柔韧感,全腹轻压痛,无反跳痛,移动性浊音(+),肝脾未触及肿大。腹水检查为淡血性渗出液,PPD(+),该患者最可能的诊断是
患者,女,30岁。分娩一女婴。因小事与家人发生争吵后,情志抑郁,食欲不振,2天后乳汁减少,乳房胀硬,低热,舌质正常,脉弦。其辨证为
氯霉素最严重的不良反应是青霉素G最严重的不良反应是
根据循证医学中证据分级,同质队列研究的系统评价结果属于
下列关于植物的种子和果实的说法,不正确的是()。
随着时代的变迁,任何民族文化都要遭遇古与今的传承难题。很多非物质文化遗产后继乏人即是一个鲜明的例子,一方面人们感叹承载着独特文化的技艺技能难以延续,另一方面却又因经济的考量对从事相关工作望而却步。在这种情况下,即使有政府部门的大规模投入,长远来看恐怕也难以
下列关于局域网传输介质的叙述中,正确的是______。
可以下载该站点的所有内容,并可执行内嵌的ActiveX控件或者Java程序的站点属于
最新回复
(
0
)