首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×3矩阵,B是3×4非零矩阵,满足AB=O,其中A=,则必有( )
设A是4×3矩阵,B是3×4非零矩阵,满足AB=O,其中A=,则必有( )
admin
2020-02-28
64
问题
设A是4×3矩阵,B是3×4非零矩阵,满足AB=O,其中A=
,则必有( )
选项
A、当t=3时,r(B)=1.
B、当t≠3时,r(B)=1.
C、当t=3时,r(B)=2.
D、当t≠3时,r(B)=2.
答案
B
解析
由题设AB=O,知r(A)+r(B)≤3(3是A的列数或B的行数).
又B是非零矩阵,有r(B)≥1,从而有1≤r(B)≤3-r(A).又
当t=3时,r(A)=1,有1≤r(B)≤2.r(B)=1或r(B)=2,故(A)、(C)不成立.
当t≠3时,r(A)=2,有1≤r(B)≤1,即r(B)=1.
故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/0JA4777K
0
考研数学二
相关试题推荐
求不定积分
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
求下列定积分:(Ⅰ)I=(Ⅱ)J=sin2xarctanexdx.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
设矩阵B满足AB=A+2B,求B.
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
改变积分次序
设矩阵A和B满足关系式AB=A十2B,其中,求矩阵B.
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在X轴上的截距为u,求
随机试题
某男婴,胎龄35周,出生10天。因低体温、反应差、拒乳、尿少、双小腿外侧皮下脂肪变硬入院。该患儿最关键的护理措施是
A.天麻钩藤饮B.羚角钩藤汤C.半夏白术天麻汤D.独活寄生汤E.大定风珠患者头痛,眩晕,失眠多梦,舌红苔黄,脉弦,治疗宜选用的方剂是
体内大多数氨基酸(赖氨酸、脯氨酸、羟脯氨酸除外)都参与转氨基过程,并存在多种转氨酶。转氨酶的辅酶是
国家在征税之前,通过法律形式具体规定了征税对象、纳税人、征收比例和征收办法等,体现了税收的( )特征。
为股票发行出具审汁报告、资产评估报告或昔法律意见书等文件的证券服务机构人员,在该股票承销期内和期满后6个月内,不得买卖该种股票。此说法符合法律规定。()
20世纪90年代以来,世界各国把学前教育的根本目标定位于()。
一、注意事项1.本次申论考试分题本和答题纸两部分,题本提供有关资料及问题,答题纸供你作答时使用。2.考生姓名、准考证号务必填写在答题纸密封线内指定位置,答题纸上不准做与答题无关的标记符号。注意:所有作答都必须填写在答题纸指定位置上,否则无效。3.用蓝
在侦查阶段犯罪嫌疑人聘请律师可以为其()。
谈谈虚假新闻的形式和如何应对与减少虚假新闻。(中国人民大学,2011)
下列关于法律实施和法律实现的表述,能够成立的是()。
最新回复
(
0
)