首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
admin
2017-09-15
58
问题
设α
1
,…,α
m
,β为m+1个n维向量,β=α
1
+…+α
m
(m>1).证明:若α
1
,…,α
m
线性无关,则β-α
1
,…,β-α
m
线性无关.
选项
答案
令k
1
(β-α
1
)+…+k
m
(β-α
m
)=0,即 k
1
(α
2
+α
3
+…+α
m
)+…+k
m
(α
1
+α
2
…+α
m-1
)=0 或(k
2
+k
3
+…+k
m
)α
1
+(k
1
+k
3
+…+k
m
)α
2
+…+(k
1
+k
2
+…+k
m-1
)α
m
=0, 因为α
1
,…α
m
线性无关,所以[*] 因为[*]=(-1)
m-1
(m-1)≠0,所以k
1
=…=k
m
=0,故β-α
1
,…,β-α
m
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/0Kt4777K
0
考研数学二
相关试题推荐
[*]
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
若f(x)是连续函数,证明
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
随机试题
我国现行税率分为()。
我国相关文件规定,需要招标的工程咨询服务项目技术性、专业性较强或环境资源条件特殊,符合条件的潜在投标人数量有限的,可以采用()方式选择咨询单位。
()为项目费用的计划、组织、估算、预算和控制规定了格式和标准。
()在20世纪60年代初提出的“规划的选择理论”和“倡导性规范”概念,成为了城市规划公众参与的理论基础。
北方光源中心的机电工程由某安装公司承包,工程内容有空调工程,仪表工程,光缆工程,BA系统及消防工程。空调系统的洁净度等级设计为N5级,并由BA监控,其传感器、执行器通过DDC与计算机连接。中心的门禁系统采用可以记录员工进出时问的非接触式感应电控锁。仪表设备
个人教育贷款资金安全的根本保证是()。
干细胞遍布人体,因为拥有变成任何类型细胞的能力而令科学家们着迷,这种能力意味着它们有可能修复或者取代受损的组织。而通过激光刺激干细胞生长很有可能实现组织生长,因此研究人员认为激光技术或许将成为医学领域的一种变革工具。以下哪项如果为真,最能支持上述结论?
Theprovisionofpositiveincentivestoworkinthenewsocietywillnotbeaneasytask.【F1】Butthemostdifficulttaskofall
下列关于硬盘的说法错误的是()。
Lackofsleepmakesyougainweightandraisesyourriskforheartdiseaseanddiabetes,apartfromresultingin【C1】______vision
最新回复
(
0
)