首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
admin
2016-05-31
40
问题
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=U
T
U,即A与单位阵E合同.
选项
答案
必要性:因为对称阵A为正定的,所以存在正交矩阵P使P
T
AP=diag(λ
1
,λ
2
,…,λ
n
)=A,即A=PAP
T
,其中λ
1
,λ
2
,…,λ
n
为A的全部特征值,A是正定矩阵,λ
1
,λ
2
,…,λ
n
均为正数.令A=diag[*] 再令U=[*],则U可逆,且A=U
T
U故A与单位矩阵合同. 充分性:若存在可逆矩阵U,使A=U
T
U,则对任意的x∈R
n
且x≠0,有||Ux||
2
>0,即 f(x)=x
T
Ax=x
T
U
T
Ux=||Ux||
2
>0, 矩阵A是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/0LT4777K
0
考研数学三
相关试题推荐
由于五四运动是在新的社会历史条件下发生的,它具有以辛亥革命为代表的旧民主主义革命所不具备的一些特点。主要是()。
恩格斯说:“……这个原理看起来很简单,但是仔细考察一下也会立即发现,这个原理的最初结论就给一切唯心主义,甚至给最隐藏的唯心主义当头一棒。关于一切历史的东西的全部传统的和习惯的观点都被这个原理否定了。”“这个原理”指的是()。
2019年5月15日,来自亚洲47个国家和五大洲的各方嘉宾,出席亚洲文明对话大会,共商亚洲文明发展之道,共话亚洲合作共赢大计,致力深化文明交流互鉴,致力务实共建亚洲命运共同体、人类命运共同体的人文基础。这是亚洲文明交流互鉴的重要历史节点,是人类文明发展的重
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
设向量a与b不共线,问λ为何值时,向量P=λa+5b与q=3a-b共线?
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A及(A-3/2E)6,其中E为3阶单位矩阵.
随机试题
假设“应付账款”账户期初贷方余额为8000元,本期借方发生额14000元,贷方发生额12000元,则该账户的期末余额为
来源于成骨细胞的原发性肿瘤有
中药鉴定最简单、常用的方法是
A、FD-MSB、EI-MSC、FAB-MSD、LSI-MSE、ESI-MS快原子轰击质谱为
下列不属于煤气安全检测方法的是()。
对焊缝内部线状缺陷的检测,下列检测方法中( )是最优选择。
流浪未成年人合法权益保护涉及多个部门。根据《关于加强流浪未成年人工作的意见》,()是流浪未成年人工作的政府职能部门。
求下列二重积分的累次积分
假设事件A和B满足P(B∣A)=1,则()
A、Heneedstobuyanewsweater.B、Hehasgottosaveonfuelbills.C、Thefuelpricehasskyrocketed.D、Theheatingsystemdoes
最新回复
(
0
)