首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2019-08-12
117
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+2
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
及β
1
,…,β
s
均线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
2
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
s
)+…+λ
s
(α
s
一β
s
)=0,从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/0aN4777K
0
考研数学二
相关试题推荐
判别积分的敛散性.
计算其中
证明:方阵A与所有同阶对角矩阵可交换的充分必要条件是A为对角矩阵.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为()
设A,B是n阶矩阵,则下列结论正确的是()
设A,B均为n阶矩阵,A有n个互不相同的特征值.证明:若AB=BA,则B相似于对角矩阵;
若A,B均为n阶矩阵,且A2=A,B2=B,r(A)=r(B),证明:A,B必为相似矩阵.
要使都是线性方程组AX=0的解,只要系数矩阵A为()
随机试题
主要经消化道传播的肝炎病毒是
下列不属于性传播疾病的是
有关肾病综合征高脂血症的叙述,下列哪项是不正确的?()
对张某变更逮捕强制措施的做法正确的是:()。对于张某取保候审的最长期限是:()。
为实现划一重量标准,需要在限制区段采取哪些提高列车重量的措施?
Itwassupposedtobethenew-mediaelection.E-mail,blogging,socialnetworkingandtweetingwereexpectedtosurgeinimporta
Thebeliefthattheuniverseisimprovingandthatgoodwill______triumphoverevilprevails.
Theyreturnedmykeystome.Someone(pick)______themupinthestreet.
A、Readingnewspaper.B、Writingdocuments.C、Talkingaboutanimals.’D、WatchingTV.D题目询问说话者在做什么。关键是听到女士的问话“新闻之后演什么”,可判断选项D(看电视)正
A、Delightful.B、Painful.C、Refreshing.D、Depressing.D
最新回复
(
0
)