首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2019-08-12
123
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+2
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
及β
1
,…,β
s
均线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
2
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
s
)+…+λ
s
(α
s
一β
s
)=0,从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/0aN4777K
0
考研数学二
相关试题推荐
设f(x)是(一∞,+∞)上的连续非负函数,且求f(x)在区间[0,π]上的平均值.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
下列反常积分收敛的是()
判别积分的敛散性.
已知3阶矩阵A的逆矩阵为试求其伴随矩阵A*的逆矩阵.
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2一kα3,α3一α1也线性无关的充要条件是k_____________.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为()
已知A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于()
设矩阵A和B满足关系式AB=A+2B,其中求矩阵B.
随机试题
某人的红细胞与B型血的血清发生凝集,此人的血清与B型血的红细胞不发生凝集,分析此人的血型为()
病人消谷善饥,多见于
肺性脑病不能用高浓度吸氧,主要是因为
材料成本管理的控制应包括()。
已知某商业集团2008-2009年各季度销售资料,如表5-1所示。则表5-1中,属于时期数列的有()。
目前我国企业冗员较多,人浮于事,实行()可以解决富余人员较多的问题。
根据以下资料,回答问题。已知中国2010年水电发电量为6867亿兆瓦时,那同年核电发电量约为()亿兆瓦时。
Aperson’shomeisareflectionofhispersonality.Dependingonpersonality,mosthaveinminda(n)"【C1】______home".Butingen
Inthepopularmind,theInternetistherealizationoftheglobalvillage,wheretheflowofinformationandideasisunimpeded
FixingaWorldThatFostersObesityA)WhyareAmericansgettingfatterandfatter?Thesimpleexplanationisthatweeattoomuc
最新回复
(
0
)