首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2019-08-12
99
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+2
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
及β
1
,…,β
s
均线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
2
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
s
)+…+λ
s
(α
s
一β
s
)=0,从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/0aN4777K
0
考研数学二
相关试题推荐
计算积分:设求
求
设求正交矩阵Q,使得QTAQ=Q-1AQ=A,其中A是对角矩阵.
设A,B均为n阶矩阵,A有n个互不相同的特征值.证明:若AB=BA,则B相似于对角矩阵;
设m×n阶矩阵A的n个列向量线性无关,则()
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=a△x,使
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=______________.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ=0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,是导出组Ax=0的解向量的个数为()
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导
随机试题
某户装有40W和25W的电灯各一盏,它们的电阻分别是1210Ω和1936Ω,电源电压为220V,求两盏灯的总电流I∑是多少?
A、水提醇沉法B、醇提水沉法C、醇提醚沉法D、铅盐沉淀法E、酸提碱沉法用酸性水从药材中提取出生物碱后再使其从水中析出的方法为
海螵蛸的别名是
商业折扣是企业对顾客在商品价格上的扣减。向顾客提供这种价格上的优惠,主要目的在于吸引顾客为享受优惠而提前付款,缩短企业的平均收款期。()
对于一项有效的承诺,下面说法错误的是()。
在田径运动技术中,跑的一个周期包括()。
(2015年真题)在Word中,下列操作不能实现的是()。
一副卡牌上面写着1到10的数字,甲和乙从中分别随机抽取三张牌,并比较其中较大的两张牌的牌面之积,数字大的人获胜。甲先抽出三张牌,上面的数字分别是2、6和8,问乙从剩下的牌中抽取三张牌的话,其胜过甲的概率()。
Todaywearesurethatthemailwillbesenteverydaytoourdoor.Butintheearlydays,noonecouldbesureaboutwhere—orw
(a)Asidefromperpetuatingitself,thesolepurposeoftheAmericanAcademyandInstituteofArtsandLettersisto"foster,as
最新回复
(
0
)