首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+21)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2019-08-12
113
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+2
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
及β
1
,…,β
s
均线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
2
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
s
)+…+λ
s
(α
s
一β
s
)=0,从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/0aN4777K
0
考研数学二
相关试题推荐
设f(x)是(一∞,+∞)上的连续非负函数,且求f(x)在区间[0,π]上的平均值.
下列反常积分收敛的是()
计算其中
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设A,B是n阶矩阵,证明:AB和BA的主对角元素的和相等.(方阵主对角元素的和称为方阵的迹,记成tr(A),即
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为()
设求正交矩阵Q,使得QTAQ=Q-1AQ=A,其中A是对角矩阵.
若A,B均为n阶矩阵,且A2=A,B2=B,r(A)=r(B),证明:A,B必为相似矩阵.
设m×n阶矩阵A的n个列向量线性无关,则()
设A=E一ξξT,ξ是非零列向量,证明:(1)A2=A的充要条件是考ξTξ=1;(2)当ξTξ=1时,A不可逆.
随机试题
可乐定引起口干的原因是:
患者男,16岁。因右下肢肌肉血肿,关节腔出血,两天入院,以往有多次发作史,家族中其舅舅有类似病史。血液输注,应选择哪种成分为好
关于催产素静脉静滴,下列哪项是正确
明敷设各类管路和线槽时,应采用单独的卡具吊装或支撑物固定。吊装线槽或管路的吊杆直径不应小于()mm。
CBCL第二部分的社会能力归纳成3个因子,即()。
下面不属于静态的组织设计理论的是()。
根据斯金纳强化程式分类,以下属于定比强化的是()。
某二叉树有5个度为2的结点,则该二叉树中的叶子结点数是()。
Theage-oldriddleofwhymanywomenoutlivemenhasbeensolved.It’stheirpumpingpower,Britishresearchershavefound.
A、Sheoughttobuyherowncopymachine.B、Sheneedstobuyapackageofpaper.C、Shehasalreadyusedenoughpaper.D、Sheshoul
最新回复
(
0
)