首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,且E+A可逆,令f(A)=(E-A)(E+A)-1,证明:若A是反对称矩阵,则F(A)是正交阵.
设A是n阶方阵,且E+A可逆,令f(A)=(E-A)(E+A)-1,证明:若A是反对称矩阵,则F(A)是正交阵.
admin
2017-06-14
29
问题
设A是n阶方阵,且E+A可逆,令f(A)=(E-A)(E+A)
-1
,证明:若A是反对称矩阵,则F(A)是正交阵.
选项
答案
A
T
=-A,E+A可逆,要证F(A)=(E—A)(E+A)
-1
是正交阵,只要证F(A)F(A)
T
=E,即 (E-A)(E+A)
-1
E(E-A)(E+A)
-1
]
T
=(E—A)(E+A)
-1
[(E+A)
-1
]
T
(E—A)
T
=(E—A)(E+A)
-1
(E—A)
-1
(E+A) =(E+A)
-1
(E—A)(E—A)
-1
(E+A) =E. 即F(A)是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/0du4777K
0
考研数学一
相关试题推荐
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
[*]
A、 B、 C、 D、 A
[*]
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是().
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
(1998年试题,十三)设两个随机变量X,Y相互独立,且都服从均值为0,方差为的正态分布,求随机变量|X—Y|的方差.
(2008年试题,4)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k,的值
设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
随机试题
简述国际重复征税的危害。
妊娠早期卵巢变化的特征是
简单会计分录是指( )的会计分录。
非法为他人出具金融票证罪,是指银行或者其他金融机构的工作人员违反规定,为他人出具(),情节严重的行为。
在下列数学媒体中,同时具备画图、书写、编辑、页面操作功能的是()。
有()情形之一的,行政机关应当依法办理有关行政许可的注销手续。
每期期末等额收付款项的年金,称为:
阅读以下说明,回答下面问题。【说明】由于历史的原因,部署带Internet协议安全的第二层隧道协议(L2TP/IPSec)的问题之一在于无法定位网络地址转换(NAT)之后的IPSec对话方。Internet服务提供商和小型办公/家庭办公(S
为了通过传值方式来传送过程参数,在函数声明部分应使用的关键字为
Althougheconomicgrowthhasconventionallybeenviewedasthe______forpovertyinunderdevelopedregions,thisprescriptionsne
最新回复
(
0
)