首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,十三)设两个随机变量X,Y相互独立,且都服从均值为0,方差为的正态分布,求随机变量|X—Y|的方差.
(1998年试题,十三)设两个随机变量X,Y相互独立,且都服从均值为0,方差为的正态分布,求随机变量|X—Y|的方差.
admin
2013-12-27
36
问题
(1998年试题,十三)设两个随机变量X,Y相互独立,且都服从均值为0,方差为
的正态分布,求随机变量|X—Y|的方差.
选项
答案
由题设,X与Y独立,且[*],由于正态分布的线性变换也服从正态分布,从而随机变量X—Y~N(μ,σ
2
)其中μ=E(X—Y)=0,σ
2
=D(X—Y)=E[(X一Y)
2
]=1.因此X—Y一N(0,1),即服从标准正态分布.由方差的计算公式D(X)=E(X
2
)=[E(X)]
2
知,需求出E(|X—Y|)及E(|X—Y|
2
),又由已知E(|X—Y|
2
)=E[(X—Y)
2
]=1,因此只需求E(|X—Y|),因为X—Y~N(0,1),所以[*]综上得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VC54777K
0
考研数学一
相关试题推荐
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设向量组Ⅰ:α1,α2,…,αr,可由向量组Ⅱ:β1,β2…,βs线性表示,则()
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为非负常数,证明对任意x∈(0,1),有
设矩阵求m、n的值及满足AB=C的所有矩阵B.
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解,试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
计算(x2+y)dxdy,其中区域D是由x2+y2≤2,y≤1与两个坐标轴所围成的区域在第一象限的部分.
Y的概率密度函数fY(y);
随机试题
室间隔膜部分隔
脑膜瘤多发于
下列关于建筑内的电梯井等竖井的说法,错误的是()。
①~⑤轴范围内应增设的室内消火栓数量最少是:
如图所示的两铸铁梁,材料相同,承受相同的荷载F。则当F增大时,破坏的情况是( )。
某公司可转换债券的面值为1000元,当前可转债的市场价格为1200元,转换价格为25元,则该可转换公司债券的转换平价为()元。[2013年11月真题]
附权证的可分离公司债券与一般的可转换债券之间的区别包括()。Ⅰ.权利的载体Ⅱ.行权方式Ⅲ.权利的内容Ⅳ.交易标的
责任成本法对共同费用在成本对象间分配的原则是()。
“亲亲相隐”原则是()在法律上确定下来的。
Theessentialproblemofmaninacomputerizedageremainsthesameasithasalwaysbeen.Thatproblemisnot【B1】______howto
最新回复
(
0
)