首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
admin
2016-10-26
51
问题
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=
其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T
0
结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
选项
答案
考虑事件A:“试验直至时间T
0
为止,有k只器件失效,而有n—k只未失效”的概率.记T的分布函数为F(t),即有 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=1一[*];而在时间T
0
未失效的概率为P{T>T
0
o}=1一F(T
0
)=[*].由于各只器件的试验结果是相互独立的,因此事件A的概率为 [*] 这就是所求的似然函数.取对数得 [*] 于是λ的最大似然估计为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0mu4777K
0
考研数学一
相关试题推荐
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
下列各对函数中,两函数相同的是[].
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
随机试题
所有癫痫病人尽可能做出病因诊断,若是首次发作的患者须排除下列哪些疾病引起的症状发作
女,47岁。胆囊结石15年,首选的治疗方法是()
确保设备配套投产正常运转的重要环节是在设备安装经检验合格后进行()。
背景资料:某机电设备安装公司经邀请招标投标,获得某10000t/d水泥熟料生产线的机电设备安装工程的总承包资格,并与业主签订了施工合同。合同规定工程范围、工期、质量标准、安全环境要求。其中质量标准和要求按部颁标准执行,主要材料如钢材、电缆、管道
在中国的统计实践中,生产法计算的GDP分为若干项,包括以下的()。
反映论是指坚持认识的本质是人脑对客观世界反映的认识论原则,亦即思想是反映存在的理论。根据上述定义,下列不属于反映论的是()。
按长度不同的各时期的资料计算平均发展速度时应采用()。
某电厂计划10月份发电240万千瓦时,结果上半月完成全月计划的62.5%,下半月发电量跟上半月同样多,10月份发电量超过计划()万千瓦时。
小张、小李和小王三人以擂台形式打乒乓球,每局2人对打,输的人下一局轮空。半天下来,小张共打了6局,小王共打了9局,而小李轮空了4局。那么,小李一共打了多少局?
SincethemoviewasreleasedseventeenUFOshavebeensightedinthestate,whichismorethanhadbeensightedinthepastten
最新回复
(
0
)