首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
admin
2016-10-26
47
问题
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=
其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时间T
0
结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
选项
答案
考虑事件A:“试验直至时间T
0
为止,有k只器件失效,而有n—k只未失效”的概率.记T的分布函数为F(t),即有 [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=1一[*];而在时间T
0
未失效的概率为P{T>T
0
o}=1一F(T
0
)=[*].由于各只器件的试验结果是相互独立的,因此事件A的概率为 [*] 这就是所求的似然函数.取对数得 [*] 于是λ的最大似然估计为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0mu4777K
0
考研数学一
相关试题推荐
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
随机试题
房产税的征收范围为城市、县城、建制镇和工矿区,包括农村。()
同肝细胞癌的发生关系不密切的是
在借贷记账法下,账户的贷方应登记( )。
办理个人教育贷款时,贷后与档案管理环节面临的操作风险不包括()。
下列各项中,符合营业税计税依据规定的是()。(2008年)
A公司从银行专门借入一笔款项,于2001年2月1日采用出包方式开工兴建一幢办公楼,2001年10月5日工程按照合同要求全部完工,10月31日下程验收合格,11月10日办理工程竣工结算,11月20日完成全部资产移交手续,12月1日办公楼正式投入使用。则公司专
2011年,四大区域的发展与民生指数,东部地区最高,为69.53%,比上年提高2.50个百分点;东北地区次之,为60.22%,比上年提高2.19个百分点;中部地区和西部地区分别为58.33%和55.41%,分别比上年提高2.73和2.79个百分点。从200
achtundzwanzig+zweiundsechzig=______
Whyisitsodifficulttofallasleepwhenyouareovertired?Thereisnooneanswerthat(1)______toeveryindividual.Butmany
SomemedicalcareispaidbytheU.S.governmentfor______.InAmerica,seriouslyillpatientswill______.
最新回复
(
0
)