首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
admin
2017-07-26
60
问题
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
选项
答案
不妨设f’(a)>0,则由f’(a)f’(b)>0可知,f’(b)>0.由导数的定义: [*] 即f(x
2
)<f(b)=f(a), 于是有f(x
2
)<f(a)<f(x
1
).由介值定理,存在点η∈(x
1
,x
2
),使得f(η)=f(a).由洛尔定理可知 存在点ξ
1
∈(x
1
,η),使f’(ξ
1
)=0, 存在ξ
2
∈(η,x
2
),使f’(ξ
2
)=0. 所以,f’(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,由洛尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f"(ξ)=0.
解析
证f"(ξ)=0的关键是找出使得f’(ξ
1
)=f’(ξ
2
)=0的区间[ξ
1
,ξ
2
].由f’(a)f’(b)>0及导数的定义、介值定理和洛尔定理便可找到这样的点ξ
1
和ξ
2
.
转载请注明原文地址:https://kaotiyun.com/show/0uH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
[*]
设函数f(x)在点x。处有连续的二阶导数,证明
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
某企业生产某种商品的成本函数为C=a+aQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为产量,求:当企业利润最大时,t为何值时征税收益最大.
设g(x)二阶可导,且f(x)=求常数a使得f(x)在x=0处连续;
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
随机试题
A.α受体阻滞剂B.β受体阻滞剂C.α受体兴奋剂D.β受体兴奋剂异丙肾上腺素是
有关构成比的描述,正确的是()
肺气肿时,肺部叩诊音应是
下列叙述正确的是()
(2008年)重W的物块能在倾斜角为α的粗糙斜面上滑下(图4—31)。为了维持物块在斜面上的平衡,在物块上作用向左的水平力FQ。在求解力FQ的大小时,物块与斜面间的摩擦力F方向为()。
在燃气管道系统中,组成二级系统的管网有( )。
圈转套压法的特点是()。
案例:某同学在求反比例函数,当x≤3时,求),的取值范围时直接将x≤3代入问题:针对该生的情况,请你设计一个辅导教学片段,并说明设计意图;
关于2008——2012年间国家电网公司清洁能源的发展,能够从资料中推出的是()。
下列选项中不属于我国民法的渊源的是()
最新回复
(
0
)