首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
admin
2017-07-26
88
问题
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
选项
答案
不妨设f’(a)>0,则由f’(a)f’(b)>0可知,f’(b)>0.由导数的定义: [*] 即f(x
2
)<f(b)=f(a), 于是有f(x
2
)<f(a)<f(x
1
).由介值定理,存在点η∈(x
1
,x
2
),使得f(η)=f(a).由洛尔定理可知 存在点ξ
1
∈(x
1
,η),使f’(ξ
1
)=0, 存在ξ
2
∈(η,x
2
),使f’(ξ
2
)=0. 所以,f’(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,由洛尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f"(ξ)=0.
解析
证f"(ξ)=0的关键是找出使得f’(ξ
1
)=f’(ξ
2
)=0的区间[ξ
1
,ξ
2
].由f’(a)f’(b)>0及导数的定义、介值定理和洛尔定理便可找到这样的点ξ
1
和ξ
2
.
转载请注明原文地址:https://kaotiyun.com/show/0uH4777K
0
考研数学三
相关试题推荐
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设连续函数f(x)满足,则f(x)=_________.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设A是m×n阶矩阵,下列命题正确的是().
试证明函数在区间(0,+∞)内单调增加.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设f(x)在[a,b]上连续,在(a,6)内二阶可导,f(a)=f(b)=0,∫ab)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
设g(x)二阶可导,且f(x)=求常数a使得f(x)在x=0处连续;
证明:当x>0时,arctanx+。
设试证明:P(A)+P(B)一P(C)≤1.
随机试题
A.胃左淋巴引流区B.隆突下和胃左引流区C.锁骨上淋巴引流区D.上纵隔淋巴引流区E.中上纵隔淋巴引流区食管下段癌三维适形放疗靶区除包括原发灶外,还应包括
95%的代谢产物自胆汁中排泄老年、轻型的糖尿病患者适合选用
设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=,则E(X2+Y2)等于()。
一、注意事项1.《申论》考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,然后按“申论要求”依次作答。二、给定资料1.依照我
A.temperatureB.specialC.thinkD.otherPhrases:A.havecreateda【T13】______techniqueB.【T14】______ofeatingthepeelC.a
下列()情况下,一般不会导致冲突的发生。
下列关于网络管理标准的叙述,错误的是
ThescientistandagriculturalinnovatorGeorgeWashingtonCarveraidedtheeconomyoftheSouthbydevelopinghundredsofcomme
Theresultoftheexperimentwasnot______topublish.
Giventheadvantageofelectronicmoney,youmightthinkthatweshouldmovequicklytothecashlesssocietyinwhichallpaymen
最新回复
(
0
)