首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2为三维线性无关的列向量组,β1,β2为三维列向量组且都与α1,α2正交,又(β1,β2)=3, (Ⅰ)证明:α1,α2,β1线性无关,但β1,β2线性相关; (Ⅱ)令B=β1β2T,求|B+2E|.
设α1,α2为三维线性无关的列向量组,β1,β2为三维列向量组且都与α1,α2正交,又(β1,β2)=3, (Ⅰ)证明:α1,α2,β1线性无关,但β1,β2线性相关; (Ⅱ)令B=β1β2T,求|B+2E|.
admin
2021-03-16
142
问题
设α
1
,α
2
为三维线性无关的列向量组,β
1
,β
2
为三维列向量组且都与α
1
,α
2
正交,又(β
1
,β
2
)=3,
(Ⅰ)证明:α
1
,α
2
,β
1
线性无关,但β
1
,β
2
线性相关;
(Ⅱ)令B=β
1
β
2
T
,求|B+2E|.
选项
答案
(Ⅰ)令k
1
α
1
+k
2
α
2
+k
3
β
1
=0, 由α
1
,α
2
与β
1
正交及(k
1
α
1
+k
2
α
2
+k
3
β
1
,β
1
)=0得k
3
(β
1
,β
1
)=0, 再由β
1
为非零向量得(β
1
,β
1
)=|β
1
|
2
>0,从而k
3
=0, 于是k
1
α
1
+k
2
α
2
=0, 再由α
1
,α
2
线性无关得k
1
=k
2
=0,故α
1
,α
2
,β
1
线性无关. 令A=[*],则r(A)=2<3,齐次线性方程组AX=0含一个线性无关的解向量, 由Aβ
1
=0,Aβ
2
=0得β
1
,β
2
为AX=0的两个非零解,故β
1
,β
1
线性相关. (Ⅱ)由B
2
=3B得B的特征值为0和3, 因为λ
1
+λ
2
+λ
3
=tr(B)=(β
1
,β
2
)=3,所以B的特征值为0,0,3, 从而B+2E特征值为2,2,5, 故|B+2E|=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/0zy4777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
以y=C1eχ+eχ(C2cosχ+C3sinχ)为特解的三阶常系数齐次线性微分方程为_______.
设z=xg(x+y)+yφ(xy),其中g,φ具有二阶连续导数,则=__________.
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在(1,1)处的法线方程为________.
设y=y(x)由参数方程=___________,y=y(x)在任意点处的曲率K=____________.
D是圆周x2+y2=Rx所围成的闭区域,则=________。
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=_______
下面结论正确的是[].
随机试题
这段文字中什么地方体现出人的认识要受到时空的限制?什么地方体现出人的认识会受到智能的限制?概括这段文字的大意。
关于沉淀反应第一阶段,下列说法不正确的是
A.IFN-τB.PGF2αC.雌激素D.CGE.孕酮猪妊娠识别的信号是
构件在变形状态下能否安全工作,主要取决于()。
销售业务的核算甲公司为增值税一般纳税人,适用的增值税税率为17%。发生下列商品销售的业务:(1)2010年1月20日,向乙公司销售商品一批,该批商品的成本为750000元,增值税专用发票上注明的货款为1000000元,税款为170000元。销售时已知乙
债券型基金是以各类债券为主要投资对象,债券投资比重不得低于()。
下列关于标准成本种类的说法中,正确的有()。
事业单位国有资产的使用包括单位自用和()等方式。
教师职业道德的核心成分是教师对教育事业的()。
我国1997年刑法废除了1979年刑法中的法律类推制度。()
最新回复
(
0
)