首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=∫-11|t-x|dt-(1+e-1),则F(x)=0在区间[-1,1]上的实根个数。( )
设F(x)=∫-11|t-x|dt-(1+e-1),则F(x)=0在区间[-1,1]上的实根个数。( )
admin
2022-03-23
56
问题
设F(x)=∫
-1
1
|t-x|
dt-
(1+e
-1
),则F(x)=0在区间[-1,1]上的实根个数。( )
选项
A、恰为0
B、恰为1
C、恰为2
D、至少为3
答案
C
解析
F(x)=∫
-1
x
(x-t)
dt+∫
x
1
(t-x)
dt-
(1+e
-1
)
=x∫
-1
x
dt-∫
-1
x
t
dt+∫
x
1
t
dt-x∫
x
1
dt-
(1+e
-1
)
F’(x)=∫
-1
x
dt+x
-x
-x
-∫
x
1
dt+x
=∫
-1
x
dt-∫
x
1
dt
对第二个积分作积分变量代换,令t=-μ,有
F’(x)=∫
-1
x
dt+∫
-x
-1
du=∫
-x
x
dt=2∫
0
x
dt
所以当x>0时,F’(x)>0;
当x<0时,F’(x)<0.
所以F(x)在区间(-1,0)内严格单调减少,在区间(0,1)内严格单调增加,再讨论F(x)在点x=-1,x=0,x=1函数值的正负,以确定F(x)=0的实根个数.
F(-1)=∫
-1
1
t
dt+∫
-1
1
dt-
(1+e
-1
)=0+∫
0
1
dt-
(1+e
-1
)>2∫
0
1
e
-1
dt-
(1+e
-1
)=
>0
F(0)=∫
-1
1
|t|
dt-
(1+e
-1
)=2∫
0
1
t
dt-
(1+e
-1
)
=-e
-1
+1-
(1+e
-1
)=
<0
F(1)=∫
-1
1
dt-∫
-1
1
t
dt-
(1+e
-1
)=2∫
0
1
dt-1/2(1+e
-1
)>2∫
0
1
e
-1
dt-1/2(1+e
-1
)=
>0.
由连续函数零点定理可知,F(x)=0在区间(-1,0)与区间(0,1)内分别至少有一实根,再由单调性可知,在这两个区间内正好各有一实根,故有两个实根,选C。
转载请注明原文地址:https://kaotiyun.com/show/1BR4777K
0
考研数学三
相关试题推荐
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
设总体X服从正态分布N(μ,σ2),X1,X2,…,Xn(n>1)是取自总体的简单随机样本,样本均值为如果P{|X一μ|<a}=
函数z=f(x,y)在点(x0,y0)可偏导是函数z=f(x,y)在点(x0,y0)连续的().
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
设随机变量X1与X2相互独立,其分布函数分别为则X1+X2的分布函数F(x)=
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
一个班共有30名同学,其中有6名女生,假设他们到校先后次序的所有模式都有同样的可能性.求男生均比女生先到校的概率
设事件A,B独立.证明:事件A,都是独立的事件组.
的渐近线条数为().
随机试题
我国基础教育的核心是()。
静脉留置针的保留时间的为
男性,66岁,双手抖动伴动作缓慢7年。查体:记忆力稍差,拇指与示指呈搓丸样静止性震颤,“铅管样肌强直”,手指扣纽扣、系鞋带等困难,书写时字越写越小,慌张步态治疗此病最有效的药物是
呼吸是指
若检验检疫证书遗失,申请人应持经法人代表签字、加盖公章的书面说明并在指定的报纸上登报声明作废后到签发原证书的检验检疫机构重新补发证书。( )
某市计划征收城郊两处居民点和部分农田建设工业园区,该处农用地转用方案符合土地利用总体规划。现该市成立了工业园区开发管理委员会,负责管理和监督土地的一级和二级开发。开发管理委员会通过招投标确定了G公司作为土地一级开发承包商。农用地转用方案、补充耕地方案、
企业建立与实施有效的内部控制,应当包括()。
有人认为,只有那些试图宣泄不满的民众才需要监督权,对于生活安逸的人来说,监督权可有可无。请结合宪法学原理对此看法进行评析。
全面内战爆发的标志是
Tomastertheviolintakes10,000hoursofpractice.Putinthattimeand【C1】______willfollow.This,atleast,iswhatmanymus
最新回复
(
0
)