首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
admin
2017-05-10
83
问题
设α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列说法正确的是
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
+α
3
,α
2
+α
4
也线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
+α
4
,α
2
+α
4
,α
3
+α
4
线性无关.
C、若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
D、若α
1
,α
2
,α
3
,α
4
中任意三个向量均线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
答案
C
解析
若α
1
=(1,0),α
2
=(2,0),α
3
=(0,2),α
4
=(0,3),则α
1
,α
2
线性相关,α
3
,α
4
线性相关,但α
1
+α
3
=(1,2),α
2
+α
4
=(2,3)线性无关.故(A)不正确.
对于(B),取α
4
=一α
1
,即知(B)不对.
对于(D),可考察向量组(1,0,0),(0,1,0),(0,0,1),(一1,一1,一1),可知(D)不对.
至于(C),因为4个3维向量必线性相关,如若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表m.现在α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关.故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/1DH4777K
0
考研数学三
相关试题推荐
设α=(1,1,1)T,β=(1,0,k)T。若矩阵αβT相似于,则k=_________.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设n阶可逆矩阵A满足2|A|=|kA|,k>0,则|=_____.
设矩阵则逆矩阵(A一2E)-1=_____.
设n阶方程A=(a1,a2,…,an),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(I):α1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
设随机变量X在[2.5]上服从均匀分布,现对X进行3次独立观测,求3次观测中至少有两次出现事件{X>3}的概率为_____.
设a0=1,a1=7/2,an+1=-(1+(1/n+1))an,n≥2,证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布;(Ⅱ)Y的边缘分布;(Ⅲ)在X=0条件下,关于y的条件分布.
随机试题
慢性胃炎的主要病因是()
关于膝关节的运动,下列哪项叙述是正确的?
关于《中国药典》收载内容的说法,错误的是()。
珠海市海关在进行报关检查时,发现龙鹏对外贸易公司出口的棉纱超出了国家关于棉纱出口限额的规定,遂决定将这批棉纱扣留,龙鹏公司不服珠海海关扣留全部棉纱的决定,遂提起行政复议,复议机关改变了珠海市海关的行为,决定将超出限额的棉纱扣留,限额内的棉纱仍交给龙鹏公司出
一般工业固体废物系指被有关规定认定不具有危险特性的工业固体废物,它又可根据对其进行的浸出实验的结果分为( )类。
对于项目风险评价中出现重大风险的安全技术措施之一是()
按照《建筑工程建筑面积计算规范》的规定,应计入建筑面积的有()。
公司增资减资,债权人自接到通知书之日起()日内,未接到通知书的自公告之日起()日内有权要求公司清偿债务或者提供相应的担保。
“规定从《四书》中出题,以《四书章句集注》为答题标准”的朝代是
[*]
最新回复
(
0
)