首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
admin
2022-04-08
112
问题
(Ⅰ)设f(x),g(x)在点x=x
0
处可导且f(x
0
)=g(x
0
)=0,f′(x
0
)g′(x
0
)<0,求证:x=x
0
是f(x)g(x)的极大值点.
(Ⅱ)求函数F(x)=
(x∈(—∞,+∞))的值域区间
选项
答案
(Ⅰ)由于[*]=f′(x
0
)g(x
0
)+f(x
0
)g′(x
0
)=0,因此x=x
0
是f(x)g(x)的驻点,进一步证明是它的极大值点. 由条件f′(x
0
)g′(x
0
)<0 [*]f′(x
0
)<0,g′(x
0
)>0(或f′(x
0
)>0,g′(x
0
)<0),由 [*] g′(x
0
)=[*] 及极限的保号性质[*]δ>0,当x∈(x
0
—δ,x
0
+δ,x≠x
0
时 [*] [*]x∈(x
0
,x
0
+δ)时 f(x)<0(>0), g(x)>0(<0); x∈(x
0
—δ,x
0
)时 f(x)>0(<0), g(x)<0(>0) x∈(x
0
—δ,x
0
+δ),x≠x
0
时 f(x)g(x)<0=f(x
0
)g(x
0
) x=x
0
是f(x)g(x)的极大值点. (Ⅱ)由题设知F(x)是(—∞,+∞)上连续的偶函数,且由 [*] F(x)在(—∞,0]上[*],在[0,+∞)上[*]. 由于F(0)=0.又 [*] 因此,函数F(x)的值域区间是[0,[*]arctant2).
解析
转载请注明原文地址:https://kaotiyun.com/show/1If4777K
0
考研数学二
相关试题推荐
设X1,X2,…,Xn相互独立同分布,每个分布函数均为F(x),记X=min(X1,…,Xn),Y=max(X1,…,Xn),则(X,Y)的分布函数F(x,y)当y>x时在(x,y)处的值为()
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为则()
设函数f(x)具有任意阶导数,且f’(x)=[f(x)]2,则f(n)(x)=()
设f(x)是偶函数,φ(x)是奇函数,则下列函数(假设都有意义)中,是奇函数的是()
函数f(x,y)=
设A是m×n矩阵,r(A)=m<n,则下列命题中不正确的是
若f(x)在开区间(a,b)内可导,且x1,x2是(a,b)内任意两点,则至少存在一点ξ,使下列诸式中成立的是()
设在区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)],则().
随机试题
菲利普斯曲线
争名利,何年是彻。彻:
A.浸渍法B.渗漉法C.煎煮法D.回流法E.沙氏或索氏提取法
研究城市土地利用空间分布结构时,将城镇分为()。
计算机的数据输出设备主要有()、打印机、绘图仪等。
甲上市公司拟非公开发行股票,其发行方案的下列内容中,符合证券法律制度规定的是()。(2011年)
突发事件,是指突然发生,造成或者可能造成严重社会危害,需要采取应急处置措施予以应对的自然灾害、事故灾难、公共卫生事件和社会安全事件。为妥善处理突发事件,国家建立统一领导、综合协调、分类管理、分级负责、()管理为主的应急管理体制。
(2017·福建)“小明既聪明又勤奋”,该评价涉及的心理现象是()
《根特协定》
Notes:parade游行TheVillageofPouceCoupeofficewillreopenon________.
最新回复
(
0
)