首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x21,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=(a1,a2,a3)T,β=(b1,b2,b3)T.(1)证明:二次型f对应的矩阵为2αα T+ββTT;(2)若α,β正交且均为单位向量,证
设二次型f(x1,x21,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=(a1,a2,a3)T,β=(b1,b2,b3)T.(1)证明:二次型f对应的矩阵为2αα T+ββTT;(2)若α,β正交且均为单位向量,证
admin
2020-06-05
58
问题
设二次型f(x
1
,x
21
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记α=(a
1
,a
2
,a
3
)
T
,β=(b
1
,b
2
,b
3
)
T
.(1)证明:二次型f对应的矩阵为2αα
T
+ββT
T
;(2)若α,β正交且均为单位向量,证明:f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(1)由已知条件 f(x
1
,x
2
,x
31
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
[*] 且(2αα
T
+ββ
T
)
T
=2αα
T
+ββ
T
,所以二次型f对应的矩阵为2αα
T
+ββ
T
. (2)设A=2αα
T
+ββ
T
,由于|α|=1,β
T
α=0,那么 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α 所以α为矩阵对应特征值λ
1
=2的特征向量.又Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β所以β为矩阵对应特征值λ
2
=1的特征向量. 又矩阵A满足 R(A)=R(2αα
T
+ββ
T
)≤R(2αα
T
)+R(ββ
T
)=2 所以λ
3
=0也是矩阵的一个特征值,故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Nv4777K
0
考研数学一
相关试题推荐
方程组x1+x2+x3+x4+x5=0的基础解系是__________.
设y=y(x)由y=tan(x+y)所确定,试求y’,y".
设A,B为n阶矩阵,则下列结论正确的是().
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设n阶(n≥3)矩阵若矩阵A的秩为n-1,则a必为()
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
设A,B为n阶对称矩阵,下列结论不正确的是().
n阶矩阵A和B具有相同的特征值是A和B相似的()
设(I)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
随机试题
通用寄存器组的相关有两种解决办法,分别是_______和_______。
《儿女英雄传》的题材类型是()
患者男,84岁。近期出现记忆力下降,静止性震颤,临床诊断为帕金森病。早期,轻症的首先药物为
肛周脓肿常见的后遗症是内痔环切术常有的后遗症是
请简述世亚行对国际竞争性招标(ICB)的审查程序。
《室外排水设计规范》规定,污水管道最小管径为()mm。
19世纪末,维新变法从一种思潮得以发展为一场政治运动,关键是()。
Inthepresenteconomic_______wecanmakeevengreaterprogressthanpreviously.
Demographyisthestatisticalstudyofhumanpopulations.Itcanbeageneralsciencethatcanbeappliedtoanykindof
Ialwayspreferstartingearly,ratherthan(leave)______everythingtothelastminute.
最新回复
(
0
)