首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x21,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=(a1,a2,a3)T,β=(b1,b2,b3)T.(1)证明:二次型f对应的矩阵为2αα T+ββTT;(2)若α,β正交且均为单位向量,证
设二次型f(x1,x21,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=(a1,a2,a3)T,β=(b1,b2,b3)T.(1)证明:二次型f对应的矩阵为2αα T+ββTT;(2)若α,β正交且均为单位向量,证
admin
2020-06-05
60
问题
设二次型f(x
1
,x
21
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记α=(a
1
,a
2
,a
3
)
T
,β=(b
1
,b
2
,b
3
)
T
.(1)证明:二次型f对应的矩阵为2αα
T
+ββT
T
;(2)若α,β正交且均为单位向量,证明:f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(1)由已知条件 f(x
1
,x
2
,x
31
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
[*] 且(2αα
T
+ββ
T
)
T
=2αα
T
+ββ
T
,所以二次型f对应的矩阵为2αα
T
+ββ
T
. (2)设A=2αα
T
+ββ
T
,由于|α|=1,β
T
α=0,那么 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α 所以α为矩阵对应特征值λ
1
=2的特征向量.又Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β所以β为矩阵对应特征值λ
2
=1的特征向量. 又矩阵A满足 R(A)=R(2αα
T
+ββ
T
)≤R(2αα
T
)+R(ββ
T
)=2 所以λ
3
=0也是矩阵的一个特征值,故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Nv4777K
0
考研数学一
相关试题推荐
微分方程y’-xe-y+=0的通解为_______.
二次型f(x1,x2,x3)=(x1—x2)2+4x2x3的矩阵为___________.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3)dx+(2x+y)dy的值最小.
已知n维向量组(Ⅰ):α1,α2,…,αs和向量组(Ⅱ):β1,β2,…,βt的秩都等于r,那么下述命题不正确的是()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
求BX=0的通解.
微分方程的通解为__________.
随机试题
在绘制网络图时,应用较多的方法是【】
体层摄影中,X线曝光期间连杆摆过的角度称为
轻刺激能唤醒,醒后能进行简短而正确的交谈,见于下列哪种意识障碍
A、肾皮质B、肾髓质C、肾间质D、肾盂E、肾盏血行感染引起的急性肾盂肾炎,细菌最先侵犯
已知图中所示的三根弹簧的劲度系数分别为K1,K2,K3,振体的质量为m,则此系统沿铅垂方向振动的固有频率为( )。
金属材料物理特性随焊接温度的变化是影响焊接应力与变形的主要因素,而材料的()随温度的变化是决定焊接热应力,应变的重要物理特性。
韩国人受西方文化影响,接受礼品要当面打开。()
儿童的心理障碍更多以()为主。
不愿提高政府债务上限的共和党众议员和参议员将____。他们在____具有可怕后果的政策,而最终的结果将与他们声称所要的截然相反,因为违约将立刻让政府的重要性增加而不是减少。依次填入画横线部分最恰当的一项是()。
菲利普·莫里斯发行一种半年付息的债券,具有如下特性:利率为8%,收益率为8%,期限为15年,麦考利久期为10年。(1)利用上述信息,计算调整后的久期。(2)解释为什么调整后的久期是计算债券利率敏感性的较好方法。(3)确定调整后的持有
最新回复
(
0
)