首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x21,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=(a1,a2,a3)T,β=(b1,b2,b3)T.(1)证明:二次型f对应的矩阵为2αα T+ββTT;(2)若α,β正交且均为单位向量,证
设二次型f(x1,x21,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=(a1,a2,a3)T,β=(b1,b2,b3)T.(1)证明:二次型f对应的矩阵为2αα T+ββTT;(2)若α,β正交且均为单位向量,证
admin
2020-06-05
48
问题
设二次型f(x
1
,x
21
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记α=(a
1
,a
2
,a
3
)
T
,β=(b
1
,b
2
,b
3
)
T
.(1)证明:二次型f对应的矩阵为2αα
T
+ββT
T
;(2)若α,β正交且均为单位向量,证明:f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(1)由已知条件 f(x
1
,x
2
,x
31
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
[*] 且(2αα
T
+ββ
T
)
T
=2αα
T
+ββ
T
,所以二次型f对应的矩阵为2αα
T
+ββ
T
. (2)设A=2αα
T
+ββ
T
,由于|α|=1,β
T
α=0,那么 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α 所以α为矩阵对应特征值λ
1
=2的特征向量.又Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β所以β为矩阵对应特征值λ
2
=1的特征向量. 又矩阵A满足 R(A)=R(2αα
T
+ββ
T
)≤R(2αα
T
)+R(ββ
T
)=2 所以λ
3
=0也是矩阵的一个特征值,故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Nv4777K
0
考研数学一
相关试题推荐
设是f(x)的一个原函数,则∫1exf’(x)dx=_____.
方程组x1+x2+x3+x4+x5=0的基础解系是__________.
设则f(x)的间断点为x=___________。
设函数z=f(x,y)在点(0,1)的某邻域内可微,且f(x,y+1)=1+2x+3y+o(ρ),其中ρ=,则曲面∑:z=f(x,y)在点(0,1)的切平面方程为___________.
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示,则
n阶矩阵A和B具有相同的特征值是A和B相似的()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
微分方程的通解为__________.
随机试题
小中取大法是指在决策时,首先计算各方案在不同自然状态下的收益,并找出各方案在最差自然状态下的收益,然后进行比较,选择在最差自然状态下收益最大或损失最小的方案作为最终方案的一种决策方法。大中取大法是指在决策时,首先计算各方案在不同自然状态下的收益,并找出各方
“在谈判的前期,无论对方作何表示,己方始终坚持初始报价,不愿作丝毫的退让。而到了谈判后期或迫不得已的时候,却作出大步的退让。”具有上述特点的是()
下列应该优先抢救的急症包括
一贯煎的病变脏腑是
对支原体肺炎具有重要诊断意义的是
在同一正态总体中抽样有99%的样本均数在下述范围内
会计行政法规是指( )。
下列对商品进行宣传的行为中,符合法律规定的是()。
亚里士多德的教育思想集中体现在《政治学》中。()
面向对象程序设计的基本思想是封装和可扩展性,可扩展性体现在【】和行为扩展两个方面。
最新回复
(
0
)