首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是(
[2007年] 如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是(
admin
2019-04-05
91
问题
[2007年] 如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫
0
x
f(t)dt,则下列结论正确的是( ).
选项
A、F(3)=一(3/4)F(一2)
B、F(3)=(5/4)F(2)
C、F(一3)=(3/4)F(2)
D、F(一3)=-(5/4)F(-2)
答案
C
解析
可以利用定积分的几何意义找出
F(x)与f(x)的图形的关系,再利用命题1.3.2.3(1)计算,确定正确选项.
由定积分的几何意义即命题1.3.2.3(1)得到
F(2)=∫
0
2
f(t)dt=
F(3)=∫
0
3
f(t)dt=∫
0
2
f(t)dt+∫
2
3
f(t)dt=
F(-3)=∫
0
-3
f(t)dt=一∫
-3
0
f(t)dt=一[∫
-3
-2
f(t)dt+∫
-2
0
f(t)dt]
=
F(一2)=∫
0
-2
f(t)dt=一∫
-2
0
f(t)dt=一
因而F(3)=(3/4)F(2),(B)不成立;F(3)=(3/4)F(一2),(A)不成立.显然有F(-3)=3π/8
=(3/4)×(π/2)=(3/4)F(2).(D)不成立.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/1PV4777K
0
考研数学二
相关试题推荐
求极限:.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
设某商品的需求量Q是价格P的函数,该商品的最大需求量为1000(即P=0时,Q=1000),已知需求量的变化率(边际需求)为求需求量Q与价格P的函数关系.
设函数f(x)连续,且∫0xtf(2x一t)dt=已知f(1)=1,求∫12f(x)dx的值.
设两曲线y=(a>0)与y=在(x0,y0)处有公切线(如图3.13),求这两曲线与x轴围成的平面图形绕x轴旋转而成的旋转体的体积V.
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
求极限:.
设证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
曲线y=x+的凹区间是___________.
当χ→1时,f(χ)=的极限为().
随机试题
简述学习“中国文化概论”课程的目的。
下列哪项不是大陆法系国家规定的违约金功能()。
A.头孢曲松B.红霉素C.链霉素D.多粘菌素E.四环素
关于化妆品生产及管理的说法正确的有
工程项目是按照一个总体设计建设的,可以形成生产能力或使用价值的若干单位工程的总体,这是工程项目的()特点体现。
根据《1990年国际贸易术语解释通则》,以FOB价格条件成交的买方应承担相应的责任,根据此规定,以下各项中不属于买方责任的是()。
下列4组法律行为中,都能通过代理人进行的是()。
藻类属于下列哪一种类()。
IP电话系统中,下列哪项不是IP电话系统的基本组件?()
Nord’sNet:"WaysofKnowing"fortheScienceClassroomItisapparentthatProfessorWarrenA.NordhasfoundEddington’s
最新回复
(
0
)