首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
admin
2018-12-29
74
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:B
T
AB为正定矩阵的充分必要条件是r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,所以r(B
T
AB)=n,又因为r(B
T
AB)≤r(B)≤n,所以r(B)=n。 充分性:因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,故B
T
AB为实对称矩阵。 若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的n维实列向量x≠0,有Bx≠0。又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0。于是当x≠0,有x
T
(B
T
AB)x= (Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/1RM4777K
0
考研数学一
相关试题推荐
设f(x)在(0,+∞)内连续,且f(x)>0,讨论φ(x)的单调性,其中
假设随机变量X等可能地取1,2,3,4为值,而随机变量Y等可能地取1到X的自然数为值,试求X和Y的联合概率分布.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=-1,且分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是求a及λ0的值,并求矩阵A.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
已知矩阵若矩阵X和Y满足X2+XY=E,A(X+Y)B=E.则矩阵Y=______.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设数列{nan}收敛,级数n(an一an-1)收敛(不妨设其中a0=0),证明:级数收敛.
设周期为2π的函数f(x)=的傅里叶级数为(I)求系数a0,并证明an=0,(n≥1);(Ⅱ)求傅里叶级数的和函数g(x)(-π≤x≤π),及g(2π)的值.
二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.①求f(x1,x2,x3)的矩阵的特征值.②如果f(x1,x2,x3)的规范形为y12+y22,求a.
随机试题
助人为乐
我们的实验现在已经到了最后也是最重要的一个阶段。
患者男性,67岁,自觉双下肢胫前皮肤瘙痒一年余,以夜间为重,近两天来因进食辛辣食物症状加重,双胫前皮肤可见抓痕、血痂,局部皮肤肥厚,苔藓化你认为以下哪项治疗方案最不可取
能指明疼痛部位的牙齿病症如下,除外
鹿茸中有降压作用的成分是
根据《民法通则》,15周岁的未成年人( )。
Jackwasafifteen-year-oldboylivingwithhislittlesister,Linda.Theirparentshadpassed【C1】______longago.Jackhadtaken
下列关于高自我效能感个体的行为表现描述正确的是()
下表正确的是()。在父类中的访问属性访问修饰符在子类中的访问属性
ManyadvocatesofauniversalhealthcaresystemIntheUnitedStateslooktoCanadafortheirmodel.WhiletheCanadianhealthca
最新回复
(
0
)