首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且存在可逆矩阵P=,使得P-1AP=,又A的伴随矩阵A*有特征值λ0,α=是A*的特征值λ0对应的特征向量. 计算(A*)-1;
设A为3阶实对称矩阵,且存在可逆矩阵P=,使得P-1AP=,又A的伴随矩阵A*有特征值λ0,α=是A*的特征值λ0对应的特征向量. 计算(A*)-1;
admin
2020-10-21
82
问题
设A为3阶实对称矩阵,且存在可逆矩阵P=
,使得P
-1
AP=
,又A的伴随矩阵A
*
有特征值λ
0
,α=
是A
*
的特征值λ
0
对应的特征向量.
计算(A
*
)
-1
;
选项
答案
记P=(α
1
,α
2
,α
3
),由P
-1
AP=[*] 则 A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 即 (Aα
1
,Aα
2
,Aα
3
)=(α
1
,2α
2
,—α
3
), 于是 Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=α
3
; 故A的特征值为1,2,一1,其对应的特征向量分别为 [*] 因为A为3阶实对称矩阵,由实对称矩阵不同的特征值对应的特征向量是正交的,得 α
1
T
α
3
=一2—5a+2=0, α
2
T
α
3
=—2b—5(a+1)+1=0, 解得a=0,b=一2.则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1U84777K
0
考研数学二
相关试题推荐
如图3—5,横截面积为S,深为h的水池装满水,其中S,h为常数,水密度ρ=1,g为重力加速度,若将池中的水全部抽到距原水面高为H的水塔上,则所做的功为()
设a=,则当x→0时,两个无穷小的关系是().
设区域D是由L:与x轴围成的区域,则=___。
设f(x)在[0,1]上可导,且f(0)=0,0<f’(x)<1,证明:
设方程组,有无穷多解,矩阵A的特征值为λ1=1,λ2=-1,λ3=0,其对应的特征向量为a1=,a2=,a3=.求A.
(1999年)设f(χ)是区间[0,+∞)上单调减少且非负的连续函数,a1=f(k)-∫1nf(χ)dχ(n=1,2,…),证明数列{an}的极限存在.
设A>0,D是由曲线段y=Asinx(0≤x≤π/2)及直线y=0,x=π/2所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转成旋转体的体积,若V1=V2,求A的值。
求I=,其中D为y=,y=x及x=0所围成区域.
已知二次型f(χ1,χ2,χ3)=χ12-2χ22+bχ32-4χ1χ2+4χ1χ3+2aχ2χ3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32,求a=_______、b=_______的值和正交矩阵P=_______.
随机试题
正常情况下唾液分泌量每分钟为
四物汤主治证候的病因病机是
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
黄某意图杀死张某,当其得知张某当晚在单位值班室值班时,即放火致使值班室烧毁,其结果却是将顶替张某值班的李某烧死。下列哪些判断不符合黄某对李某死亡结果所持的心理态度?()(2002/2/50)
我国中原地区某小山丘周围要布置一组住宅群,下图平面示意的A、B、C、D四个场地可供选择,在满足日照通风要求的前提下,()场地对提高建筑密度、节约用地和适用性方面最为有利。
下列关于汇款业务的说法中,正确的是()。
将等质量的铜分别放入下列溶液中,加热,充分反应后,在标准状况下有气体生成且质量最小的是()。
________足指没有预定目的、不需要经过努力的识记。
给定资料1.我们几乎每天都可以从来自世界各地的新闻报道中听到类似的消息:海水酸化、陆地沙漠化、两极冰川融化—人类仿佛正在靠近一场空前绝后的灾难。全球变暖,生物种类减少,地球生态恶化,目前越来越多的人愿意相信,所有这些悲哀惨淡的生态景象都或多或少与
奥地利法学家埃利希在《法社会学原理》中指出:“在当代以及任何其他的时代。法的发展的重心既不在立法,也不在法学或司法判决,而在于社会本身。”关于这句话涵义的阐释,下列说法错误的是:
最新回复
(
0
)