首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且存在可逆矩阵P=,使得P-1AP=,又A的伴随矩阵A*有特征值λ0,α=是A*的特征值λ0对应的特征向量. 计算(A*)-1;
设A为3阶实对称矩阵,且存在可逆矩阵P=,使得P-1AP=,又A的伴随矩阵A*有特征值λ0,α=是A*的特征值λ0对应的特征向量. 计算(A*)-1;
admin
2020-10-21
83
问题
设A为3阶实对称矩阵,且存在可逆矩阵P=
,使得P
-1
AP=
,又A的伴随矩阵A
*
有特征值λ
0
,α=
是A
*
的特征值λ
0
对应的特征向量.
计算(A
*
)
-1
;
选项
答案
记P=(α
1
,α
2
,α
3
),由P
-1
AP=[*] 则 A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 即 (Aα
1
,Aα
2
,Aα
3
)=(α
1
,2α
2
,—α
3
), 于是 Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=α
3
; 故A的特征值为1,2,一1,其对应的特征向量分别为 [*] 因为A为3阶实对称矩阵,由实对称矩阵不同的特征值对应的特征向量是正交的,得 α
1
T
α
3
=一2—5a+2=0, α
2
T
α
3
=—2b—5(a+1)+1=0, 解得a=0,b=一2.则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1U84777K
0
考研数学二
相关试题推荐
当x→0时,无穷小的阶数最高的是()。
设曲线y=y(x)过(0,0)点,M是曲线上任意一点,MP是法线段,P点在x轴上,已知MP的中点在抛物线2y2=x上,求此曲线的方程.
设f(x)在[1,+∞]上连续可导,若曲线y=f(x),直线x=l,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为,且f(2)=2/9,求函数y=f(x)的表达式。
设f(x,y)为连续函数,改变为极坐标的累次积分为
设A是n阶矩阵,证明:r(A)=1且tr(A)≠0,证明A可相似对角化.
[2013年]设函数f(x)=lnx+设数列{xn}满足lnxn+<l,证明xn存在,并求此极限.
[2003年]设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x>0.若极限存在,证明:在(a,b)内f(x)>0;
[2012年]已知函数f(x)=,记a=f(x).若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
求I=,其中D为y=,y=x及x=0所围成区域.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
随机试题
阅读《宝黛吵架》中的一段文字,然后回答下列小题。谁知这个话传到宝玉黛玉二人耳内,他二人竟从来没有听见过“不是冤家不聚头”的这句俗话儿,如今忽然得了这句话,好似参禅的一般,都低头细嚼这句话的滋味儿,不觉的潸然泪下。虽然不曾见面,却一个在潇湘馆临风洒泪
蛋白质溶液的稳定因素是
女,63岁,脑卒中后右侧偏瘫就诊康复科,体格检查:神志清楚,言语清晰,左侧肢体活动自如。右侧上下肚肌张力增高,被动活动右上肢,在关节活动范围后50%范围内出现突然卡住,然后在关节活动范围的后50%均呈现最小的阻力;被动活动左、右下肢,在关节活动范围之末时出
能明显提高高密度脂蛋白HDL的药物是
某妇女,35岁,妊娠42周,临产10小时,检查:胎心音120次/分,宫口3cm,有水囊感,S=0,B超双顶径9cm,羊水深度2.5cm,其处理以下列哪项为最佳
建筑工地上用以拌制混合砂浆的石灰膏必须经过一定时间的陈伏,这是为了消除()的不利影响。
民事法律关系的终止,是指某类民事法律关系主体之间的权利义务不复存在,彼此丧失了( )。法律关系内容变更中,一方的权利增加,也就意味着另一方的( )。
下列物品不属于民用危险品的是()。
根据以下资料,回答以下问题。2012年1~8月,北京市开发区累计完成招商项目2730个,比上年同期增长21.5%:项目总投资,597.5亿元,同比下降13.4%;企业注册资本435.8亿元,同比下降7.7%;合同外资金额10.3亿美元,同比下降3
计算机软件可划分为系统软件和应用软件两大类,以下哪个软件系统不属于系统软件?
最新回复
(
0
)