首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(a1,a2,a3,a4)为四阶方阵,且a1,a2,a3,a4为非零向量组,设AX=0的一个基础解系为(1,0,-4,)T,则方程组A*X=0的基础解系为( )。
设A=(a1,a2,a3,a4)为四阶方阵,且a1,a2,a3,a4为非零向量组,设AX=0的一个基础解系为(1,0,-4,)T,则方程组A*X=0的基础解系为( )。
admin
2019-05-27
31
问题
设A=(a
1
,a
2
,a
3
,a
4
)为四阶方阵,且a
1
,a
2
,a
3
,a
4
为非零向量组,设AX=0的一个基础解系为(1,0,-4,)
T
,则方程组A
*
X=0的基础解系为( )。
选项
A、a
1
,a
2
,a
3
B、a
1
+a
3
,a
3
,a
4
C、a
1
,a
3
,a
4
D、a
1
+a
2
,a
2
+2a
4
,a
4
答案
D
解析
由r(A)=3得r(A
*
)=1,则A
*
X=0的基础解系由3个线性无关的解向量构成,由a
1
-4a
3
=0得a
1
,a
3
成比例,显然ABC不对,选D.
转载请注明原文地址:https://kaotiyun.com/show/c0V4777K
0
考研数学二
相关试题推荐
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1—2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
设线性无关的函数y1,y2,y3都是二阶非齐次线性微分方程y〞+py′+qy=f(χ)的解,C1、C2是任意常数,则该非齐次方程的通解是【】
设A为三阶矩阵,其特征值为λ1=-2,λ2=λ3=1,其对应的线性无关的特征向量为α1,α2,α3,令P=(4α1,α2-α3,α2+2α3),则P-1(A*+3E)P为________.
设直线y=ax+b为曲线y=ln(x+2)的切线,若y=ax+b,x=0,x=4及曲线y=ln(x+2)围成的图形面积最小,求a,b的值.
设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(ex2—1)高阶的无穷小,则正整数n等于()
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。写出二次型f的矩阵表达式;
f(x)=-cosπx+(2x-3)3+(x-1)在区间(-∞,+∞)上零点个数为()
设δ>0,f(x)在(-δ,δ)内恒有f"(x)>0,且|f(x)|≤x2,记I=,则有()。
随机试题
相对于锥型式组织结构,扁平式组织结构不具备的优点是()
建设用地规划管理的对象是()。
机械设备安装找平过程中,将设备调整到设计或规范规定的水平状态的方法是()。
水利工程施工项目招标中,不属于国家指定公告发布媒介的是()。
在贷款质押业务的风险中,最主要的风险因素是()
自2005年以来,人民币不断升值,我国许多外贸型企业的出口业务受到很大影响,被迫寻找新的发展方向。其中的影响因素属于外部环境中的()。
党的最高领导机关是中央委员会。()
试从社会发展和个体发展两个方面,分析孔子关于教育作用的思想。
“忧心忡忡的穷人甚至对最美丽的风景都没有什么感觉;贩卖矿物的商人只看矿物的商业价值,他没有矿物学的感觉”。这是
[*]
最新回复
(
0
)