首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是区间[0,+∞)上单调减少且非负的连续函数, 证明数列{an)的极限存在.
设f(x)是区间[0,+∞)上单调减少且非负的连续函数, 证明数列{an)的极限存在.
admin
2019-06-09
73
问题
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,
证明数列{a
n
)的极限存在.
选项
答案
由题设可得f(k+1)≤∫
k
k+1
f(x)dx≤f(k)(k=1,2,…),因此有a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(x)dx≤0,即数列{a
n
}单调下降. 又[*] 即数列{a
n
)有下界. 故由单调有界数列必有极限的准则知,数列{a
n
}的极限存在.
解析
[分析] 证明抽象数列{a
n
}的极限存在,一般用单调有界数列必有极限定理来判断.因此只需证明{a
n
)足单调(增加或减少)且有界(上界或下界)即可.
[评注] 本题的证明过程中,用到了
,这种处理技巧值得注意.
转载请注明原文地址:https://kaotiyun.com/show/OlV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0.1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得f〞(ξ)=f′(ξ).
设3阶矩阵A可逆,且A一1=A*为A的伴随矩阵,求(A*)一1.
设函数f(x)=,则f(x)在(一∞,+∞)内()
设f(x,y,z)=ex+y2z,其中z=z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则fx’(0,1,一1)=_________。
设函数f(x,y)=3x+4y—αx2一2αy2一2βxy。试问参数α,β满足什么条件时,函数有唯一极大值?有唯一极小值?
已知曲线L的方程。求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,。
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
设3阶实对称矩阵A的特征值为1,2,3,η1=(-1,-1,1)T和η2=(1,-2,-1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
(1994年)设y=(1)求函数的增减区间及极值;(2)求函数图形的凹凸区间及拐点;(3)求其渐近线;(4)作出其图形.
随机试题
两年的诉讼时效,期间从权利人知道或者应当知道其权利受到侵害时开始计算。()
A.创面呈深棕色B.创面呈黄褐色C.创面呈黄色D.创面先为白色后为青铜色E.创面皂化样变,逐渐加深
一体操运动员,练习时翻高低杠导致腹部受压,突发上腹疼痛,2小时后疼痛加剧,疼痛主要位于右上腹。且有对应部位背部疼痛,曾有血性呕吐物。X线见腹膜后有气体。应考虑诊断为
为保证施工质量,抹灰工程均采用多遍成活,水泥砂浆每遍的抹面厚度为()mm。
影响消费者的个人因素主要有()。
物业管理企业在综合开发中根据业主、物业使用人签订的特约服务,服务费用由()约定。
以叙事、讲故事进行教学的方法是______。
马克思主义人的全面发展学说在20世纪末中国教育界的具体实践典型是()。
Thetraditionalpatternofclassroomexperienceatthecollegelevelbringstheprofessorandagroupof20to30studentstoget
Onethingthetourbooksdon’ttellyouaboutLondonisthat2,000ofitsresidentsarefoxes.Theyranawayfromthecityabou
最新回复
(
0
)