首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使=0
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使=0
admin
2017-03-06
19
问题
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使
=0
选项
答案
令φ(χ)=f(χ)∫
χ
b
g(t)dt+g(χ)∫
a
χ
f(t)dt,显然函数φ(χ)在区间[a,b]上连续,函数φ(χ)在区间(a,b)内可导,且 φ′(χ)=[f′(χ)∫
χ
b
g(t)dt-f(χ)g(χ)]+[g(χ)f(χ)+g′(χ)∫
a
χ
f(t)dt] =f′(χ)∫
χ
b
g(t)dt+g′(χ)∫
a
χ
f(t)dt 另外又有φ(a)=φ(b)=0. 所以根据罗尔定理可知存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫
ξ
b
g(t)dt+g′(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g′(χ)<0,所以区间(a,b)内必有g(χ)>0,从而就有∫
χ
b
g(t)dt>0, 于是有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1abD777K
0
考研数学二
相关试题推荐
一件可能使人感到吃惊的事实是,目前不但世界粮食产量的增长速度超过了人口的增长速度,而且同世界上人均收入的增长速度相比,粮食增长速度也是较快的,甚至其他商品价格的增长速度也比不上粮食的增长速度。尽管如此,今天在全世界仍有很多人口得不到充足的粮食。据估计,由于
中国象棋,周朝时双方就各设5个兵卒。西汉末年刘向的《说苑》中则有“斗象棋”的记载。至南北朝,因周武帝亲撰《象经》使象棋逐渐流行。唐时象棋很普及并传人日本,明清以后,棋坛名将辈出,棋谱大量刊行流传到世界上多个国家和地区。围棋是以双方分别用黑色和白色的棋子围攻
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则F’y(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的_________条件.
设A=,且B=P—1AP.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)当P=时,求矩阵B;(Ⅲ)求A100.
微分方程xy(5)一y(4)=0的通解为_______.
设函数f(χ)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(χ)>0,若极限存在,证明:(Ⅰ)在(a,b)内f(χ)>0;(Ⅱ)在(a,b)内存在一点ξ,使;(Ⅲ)在(a,b)内存在与(Ⅱ)中ξ相异的点η,使f′
下列无穷小中阶数最高的是().
设D为χOy平面上的有界闭区域,z=f(χ,y)在D上连续,在D内可偏导且满足=-z,若f(χ,y)在D内没有零点,则f(χ,y)在D上().
(Ⅰ)设f(χ)在(a,+∞)可导且f′(χ)=A,求证:若A>0,则f(χ)=+∞;若A<0,则)f(χ)=-∞.(Ⅱ)设g(χ)在[a,+∞)连续,且∫a+∞g(χ)dχ收敛,又g(χ)=1,求证l=0.
设f(x)连续,且∫0xtf(2x-t)dt=arctanx2,f(1)=1,求∫12f(x)dx.
随机试题
面神经分布的范围有
对处于创业期和拓展期的新兴公司进行资金融通的业务属于投资银行的()
关于君子人格理想的论说,主要集中在先秦儒家典籍之中。这些儒家典籍成为经典之后,历代学人不仅反复习诵,而且不断进行注疏阐释,在泱泱典籍中,形成了“经学”。先秦儒家关于君子的论说也就不断被传承和弘扬。由于儒家思想是中国历代主流意识形态的核心内容,所以经学几乎贯
恶性葡萄胎与绒毛膜癌的主要不同为
护士为卧床患者洗发时,以下操作不妥的是
根据《文物保护法》的规定,市级文物保护单位由()核定公布。
文明礼貌的核心是()。
物流中心的信息化建设一般以信息技术为基础,在一定的深度和广度上利用计算机技术、网络技术和数据库技术,控制和集成化管理企业物流运营活动中的所有信息,实现企业内外部信息的共享和有效利用,以提高企业的经济效益和市场竞争能力。()
对关系S和关系R进行集合运算,结果中既包含关系S中的所有元组也包含关系R中的所有元组,这样的集合运算称为()。
Genetics,thestudyofgenes,isgainingincreasingimportance.Genescan【B1】______manythings,fromwhomwelookliketowhat
最新回复
(
0
)