首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
admin
2017-11-22
56
问题
设图形(a),(b),(c)如下:
从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫
0
x
f(t)dt与y=f’(x)的图形分别是
选项
A、(a),(b),(c).
B、(a),(c),(b).
C、(b),(a),(c).
D、(c),(a),(h).
答案
C
解析
以(a)或(b)或(c)为y=f(x)的图形,从∫
0
x
f(t)dt及f’(x)的几何意义来看其它两个图形是否分别是y=∫
0
x
f(t)dt和y=f’(x)的图形.
若(a)是y=f(x)的图形,则f(x)在[0,1]单调上升且f)>0(x∈[0,1])
f’(x)≥0,∫
0
x
f(t)dt>0(
x∈(0,1]).但(c)中x轴下方有图像,故(a)不是y=f(x)的图形,于是(A),(B)均不正确.若(b)是y=f(x)的图形,则f(x)有唯一最大值点x
0
∈(0,1),f(x)在[0,x
0
]单调上升,在[x
0
,1]单调下降,且f(x)>0(x∈(0,1)),故f(t)dt>0且单调上升(x∈[0,1]),f’(x)≥0(x∈(0,x
0
)),f’(x
0
)=0,f’(x)≤0(x∈(x
0
,1)).因此(C)是正确的.
若(C)是y=f(x)的图形,则f(x)在[0,1]单调下降,于是f’(x)≤0.因此(D)不正确,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/1nX4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1朝A追去,求B的轨迹方程.
设总体X~N(0,1),(X1,X2,…,Xm,Xm+1,…,Xm+n)为来自总体X的简单随机样本,求统计量所服从的分布.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0
试证明:曲线恰有三个拐点,且位于同一条直线上.
设f(x)=∫01一cosxsint2dt,g(x)=,则当x→0时,f(x)是g(x)的().
随机试题
整群抽样的优点()
心理健康表现为个人具有生命的活力、积极的内心体验和良好的()
下列无菌操作规则中,哪些是正确的
Kevim试验阳性残气量增加,一秒钟用力呼气率(FEV1%.)降低
甲状腺滤泡状腺癌转移方式是
在工程项目风险管理程序中,在风险分析和评价之前的环节是( )。
总会计师不是一种专业技术职务,而是会计机构的负责人或会计主管人员。()
爵士乐和摇滚乐都起源于美国。()
【2016河南许昌】根据过度学习的研究,如果读6遍后能完整背诵一首古诗,要达到最佳记忆效果,还应再背诵()。
分布式数据库系统不具有的特点是________。
最新回复
(
0
)