首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
admin
2017-11-22
74
问题
设图形(a),(b),(c)如下:
从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫
0
x
f(t)dt与y=f’(x)的图形分别是
选项
A、(a),(b),(c).
B、(a),(c),(b).
C、(b),(a),(c).
D、(c),(a),(h).
答案
C
解析
以(a)或(b)或(c)为y=f(x)的图形,从∫
0
x
f(t)dt及f’(x)的几何意义来看其它两个图形是否分别是y=∫
0
x
f(t)dt和y=f’(x)的图形.
若(a)是y=f(x)的图形,则f(x)在[0,1]单调上升且f)>0(x∈[0,1])
f’(x)≥0,∫
0
x
f(t)dt>0(
x∈(0,1]).但(c)中x轴下方有图像,故(a)不是y=f(x)的图形,于是(A),(B)均不正确.若(b)是y=f(x)的图形,则f(x)有唯一最大值点x
0
∈(0,1),f(x)在[0,x
0
]单调上升,在[x
0
,1]单调下降,且f(x)>0(x∈(0,1)),故f(t)dt>0且单调上升(x∈[0,1]),f’(x)≥0(x∈(0,x
0
)),f’(x
0
)=0,f’(x)≤0(x∈(x
0
,1)).因此(C)是正确的.
若(C)是y=f(x)的图形,则f(x)在[0,1]单调下降,于是f’(x)≤0.因此(D)不正确,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/1nX4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:
设有微分方程y’一2y=φ(x),其中φ(x)=,在(一∞,+∞)求连续函数y(x),使其在(一∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"(ξ)=3.
设f(x)在(一1,1)内二阶连续可导,且f"(x)≠0.证明:(1)对(一1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2).
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
一实习生用一台机器接连生产了三个同种零件,第i个零件是不合格品的概率(i=1,2,3),以X表示三个零件中合格品的个数,求X的分布律.
设随机变量X1,X2,…X100独立同分布,且EXi=0,DXi=10,i=1,2,…,100,令
设为了使f(x)对一切x都连续,求常数a的最小正值.
求V(t)=((t一1)y+1)dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,≤y≤1},2≤t≤3.
设X是随机变量,EX>0且E(X2)=0.7,DX=0.2,则以下各式成立的是()
随机试题
[*]
柔性防水层多采用沥青卷材防水,它具有造价适中、施工方便、翻修简单的优点,但也有易老化、龟裂、寿命不长的缺点。()
制定计划的关键步骤是()。
有限责任公司是公司以其全部资产对其债务承担责任的企业法人。
根据《中华人民共和国监察法》规定,涉嫌职务犯罪的被调查人主动认罪认罚,监察机关经领导人员集体研究并报上一级监察机构批准后,可以在移送人民检察院时提出从宽处罚建议的情形包括()。
“业精于勤,而荒于嬉;行成于思,而毁于随”,谈谈自己的想法。
反映孔子教育民主思想的主要言论是()。
人民代表大会制度、政治协商制度等我国具体民主政治制度的实质是()
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:在使用的最初150小时内烧坏的电子管数Y的分布律;
Ithasbecomearecurringtheme,andworryinglyso.SinceOctober2015,ourplanethasexperiencedtenconsecutivemonthsofhum
最新回复
(
0
)