首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
admin
2017-11-22
63
问题
设图形(a),(b),(c)如下:
从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫
0
x
f(t)dt与y=f’(x)的图形分别是
选项
A、(a),(b),(c).
B、(a),(c),(b).
C、(b),(a),(c).
D、(c),(a),(h).
答案
C
解析
以(a)或(b)或(c)为y=f(x)的图形,从∫
0
x
f(t)dt及f’(x)的几何意义来看其它两个图形是否分别是y=∫
0
x
f(t)dt和y=f’(x)的图形.
若(a)是y=f(x)的图形,则f(x)在[0,1]单调上升且f)>0(x∈[0,1])
f’(x)≥0,∫
0
x
f(t)dt>0(
x∈(0,1]).但(c)中x轴下方有图像,故(a)不是y=f(x)的图形,于是(A),(B)均不正确.若(b)是y=f(x)的图形,则f(x)有唯一最大值点x
0
∈(0,1),f(x)在[0,x
0
]单调上升,在[x
0
,1]单调下降,且f(x)>0(x∈(0,1)),故f(t)dt>0且单调上升(x∈[0,1]),f’(x)≥0(x∈(0,x
0
)),f’(x
0
)=0,f’(x)≤0(x∈(x
0
,1)).因此(C)是正确的.
若(C)是y=f(x)的图形,则f(x)在[0,1]单调下降,于是f’(x)≤0.因此(D)不正确,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/1nX4777K
0
考研数学三
相关试题推荐
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为________.
设X1,X2,…,Xn是来自正态总体X~N(μ,σ2)的简单随机样本,记则服从t(n一1)分布的随机变量是().
设f(x)=,求f(x)的间断点并判断其类型.
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设f(x)在[0,1]上二阶可导,且f"(x)<0.证明:∫01f(x)dx≤.
设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=∫abf(t)dt|x-t|φ(t)dt的图形在(a,b)内()
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
设(2E一C-1B)AT—C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
随机试题
行政道德规范最根本的特征是它的【】
放疗后,病人表皮出现水泡,下列哪种处理方法是正确的( )。
以下哪穴不是合穴:
对项目的策划、资金筹措、建设实施、生产经营、债务偿还和资产保值增值全过程负责的是()。
咨询工程师在招标投标管理中的工作包括()。
受到行政处分的国家工作人员可以通过行政复议或行政诉讼来解决。()
管理的基本特征有()。
职业技能的特点是()。
学习所引起行为或行为潜能的变化是短暂的。
执行搜查的侦查人员不得少于2人,并需向被搜查人出示《搜查证》。()
最新回复
(
0
)