首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4)经过初等行变换变为矩阵B=(Β1,Β2,Β3,Β4),且a1,a2,a3线性无关,a1,a2,a3,a4线性相关,则( )。
设矩阵A=(a1,a2,a3,a4)经过初等行变换变为矩阵B=(Β1,Β2,Β3,Β4),且a1,a2,a3线性无关,a1,a2,a3,a4线性相关,则( )。
admin
2020-03-01
29
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
)经过初等行变换变为矩阵B=(Β
1
,Β
2
,Β
3
,Β
4
),且a
1
,a
2
,a
3
线性无关,a
1
,a
2
,a
3
,a
4
线性相关,则( )。
选项
A、Β
4
不能由Β
1
,Β
2
,Β
3
线性表示
B、Β
4
能由Β
1
,Β
2
,Β
3
线性表示,但表示法不唯一
C、Β
4
能由Β
1
,Β
2
,Β
3
线性表示,且表示法唯一
D、Β
4
能由Β
1
,Β
2
,Β
3
线性表示不能确定
答案
C
解析
因为a
1
,a
2
,a
3
线性无关,而a
1
,a
2
,a
3
,a
4
线性相关,所以a
4
可由a
1
,a
2
,a
3
唯一线性表示,又A=(a
1
,a
2
,a
3
,a
4
)经过有限次初等行变换为B=(Β
1
,Β
2
,Β
3
,Β
4
),所以方程组x
1
a
1
+x
2
a
2
+x
3
a
3
=a
4
与x
1
Β
1
+x
2
Β
2
+x
3
Β
3
=Β
4
是同解方程组,因为方程组x
1
a
1
+x
2
a
2
+x
3
a
3
=a
4
有唯一解,所以方程组x
1
Β
1
+x
2
Β
2
+x
3
Β
3
=Β
4
有唯一解,即Β
4
能由Β
1
,Β
2
,Β
3
线性表示,且表示法唯一,选C.
转载请注明原文地址:https://kaotiyun.com/show/1wA4777K
0
考研数学二
相关试题推荐
设(2E—C-1B)AT=C-1,其中E是四阶单位矩阵,AT是矩阵A的转置矩阵,则A=________。
微分方程满足初始条件y|x=2=1的特解是___________.
若方程组有解,则常数a1,a2,a3,a4应满足的条件是_______.
设3阶矩阵已知Aα与α线性相关,则a=__________.
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有(x,y)dxdy=____________.
设z=f(χ,y)在区域D有连续偏导数,D内任意两点的连线均属于D.求证:对A(χ0,y0),B(χ0+△χ,y0+△y)∈D,θ∈(0,1),使得f(χ0+△χ,y0+△y)-f(χ0,y0)=
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。求方程f(x1,x2,x3)=0的解。
[2007年]如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是(
设f(x)可导且f’(x0)=,则当△x→0时,f(x)在x0点处的微分dy是()
随机试题
北洋政府时期的官俸平时采用()
患者,男性,42岁。查体:心前区较饱满、奇脉、颈静脉怒张、肝颈静脉回流征阳性。考虑可能的疾病是
引起小儿病毒性肠炎的主要病原为
建设项目总承包模式起源于(),是对传统承包模式的变革。
在项目投产后阶段,咨询工程师开展项目的后评价工作,具体包括()。
定量研究中,进行研究设计包含()。
有如下程序:#include<stdio.h>intfun(){staticintx=0:x+=2;returnx;}main(){inti,s=1;for(i=1;i<=2;i++)s=fun();printf("%d\n",s);
打开数据库abc的正确命令是
Sometimesmyhusband______soloudly,itkeepsmeawakeatnight.
Thetroublesomeboyisindisreputeinschool,butheisevenmore______outsidethecampus.
最新回复
(
0
)