首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数z=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
求函数z=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
admin
2019-05-11
91
问题
求函数z=x
2
y(4-x-y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
选项
答案
区域D如图7.1所示,它是有界闭区域.z(x,y)在D上连续,所以在D上一定有最大值与最小值,它或在D内的驻点达到,或在D的边界上达到. [*] 为求D内驻点,先求 [*]=2xy(4-x-y)-x
2
y=xy(8-3x-2y), [*]=x
2
(4-x-y)-x
2
y=x
2
(4-x-2y). 再解方程组[*]得z(x,y)在D内的唯一驻点(x,y)=(2,1)且z(2,1)=4. 在D的边界y=0,0≤x≤6或x=0,0≤y≤6上z(x,y)=0; 在边界x+y=6(0≤x≤6)上将y=6-x代入得z(x,y)=x
2
(6-x)(-2)=2(x
3
-6x
2
),0≤x≤6.令h(x)=2(x
3
-6x
2
),则h’(x)=6(x
2
-4x),h’(4)=0,h(0)=0,h(4)=-64,h(6)=0,即z(x,y)在边界x+y=6(0≤x≤6)上的最大值为0,最小值为-64. 因此,[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1yV4777K
0
考研数学二
相关试题推荐
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设f(χ)=,且f〞(0)存在,求a,b,c.
设f(χ)连续,φ(χ)=∫01f(χt)dt,且=A.求φ′(χ),并讨论φ′(χ)在χ=0处的连续性.
二次型f(x1,z2,z3)一z;+ax;+z;一4x1z2—8x1z3—4x2.273经过正交变换化为标准形5y12+by22+4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
已知二元函数f(χ,y)满足=4,作变换且f(χ,y)=g(u,v),若=u2+v2,求a,b.
求极限
设K,L,δ为正的常数,则=_______.
求I=dχdY,其中D是由抛物线y2=χ,直线χ=0,y=1所同成.
设f(x)在(-∞,+∞)连续,在点x=0处可导,且f(0)=0,令(Ⅰ)试求A的值,使F(x)在(-∞,+∞)上连续;(Ⅱ)求F’(x)并讨论其连续性.
随机试题
男,62岁,全牙列缺失,最近出现一系列软组织改变及异常现象中不包括A.牙槽黏膜变薄B.口腔内唾液增加C.唇颊系带与牙槽嵴顶的距离变短D.味觉异常E.口角下陷
A.医疗机构配制的制剂B.处方药C.甲类非处方药D.麻醉药品凭医师处方才能在零售药店购买的是
为使AgCl沉淀溶解,可采用的方法是加入下列中的哪种溶液?
下列关于业主对工程项目管理的表述中,正确的是()。
增值税一般纳税人发生的下列情形中,应视同销售计算增值税销项税额的是()。
(2017年)近年来,国内空调产业的销售额达到前所未有的水平,不同企业生产的空调在技术和质量等方面的差异不明显,空调生产企业的主要战略路径是提高效率,降低成本,按照产品生命周期理论,目前国内空调产业所处的阶段是()。
语音融合:指在完全不自觉的情况下,频繁交流的两人口音逐渐趋同的现象。下列属于语音融合的是()。
总数为N=500,样本容量是n=50,求出间隔500÷50=10,于是每隔10个抽取一个样本,连续抽样50次。这是采用()
在会议开始前,市场部助理小王希望在大屏幕投影上向与会者自动播放本次会议所传递的办公理念,按照如下要求完成该演示文稿的制作:将演示文稿中第1页幻灯片的背景图片应用到第2页幻灯片。
A、Four.B、Five.C、Six.D、Seven.B
最新回复
(
0
)