首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若y1,y2是二阶非齐次线性微分方程(1)的两个不同的特解,证明: y〞+P(x)yˊ+Q(x)y=f(x) (1) (1)y1,y2是线性无关的; (2)对任意实数λ,y=λy1+(1-λ)y2是方程(1)的解.
若y1,y2是二阶非齐次线性微分方程(1)的两个不同的特解,证明: y〞+P(x)yˊ+Q(x)y=f(x) (1) (1)y1,y2是线性无关的; (2)对任意实数λ,y=λy1+(1-λ)y2是方程(1)的解.
admin
2020-03-10
76
问题
若y
1
,y
2
是二阶非齐次线性微分方程(1)的两个不同的特解,证明:
y〞+P(x)yˊ+Q(x)y=f(x) (1)
(1)y
1
,y
2
是线性无关的;
(2)对任意实数λ,y=λy
1
+(1-λ)y
2
是方程(1)的解.
选项
答案
证: 设微分方程为y〞+P(x)yˊ+Q(x)y=f(x). (1)因为y
1
,y
2
是方程的特解,则有 y〞
1
+P(x)yˊ
1
+Q(x)y
1
=f(x), ① y〞
2
+P(x)yˊ
2
+Q(x)y2=f(x), ② 假定y
1
,y2线性相关,则y
1
/y
2
=k,k为常数,将y
1
=ky
2
代入①式, k[y〞
2
+P(x)yˊ
2
+Q(x)y
2
]=f(x)=kf(x),f(x)≠0,故k=1,y
1
=y
2
与已知矛盾,所以y
1
,y
2
是线性无关的. (2)y
1
,y
2
是非齐次方程的解,且y
1
≠y
2
,则y
1
-y
2
是对应齐次方程,即y〞+P(x)yˊ+Q(x)y=0的一个解 y=λy
1
+(1-λ)y
2
=λ(y
1
-y
2
)+y
2
, 由非齐次方程解的结构知y=λy
1
+(1-λ)y
2
是y〞+P(x)+Q(x)y=f(x)的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/2VD4777K
0
考研数学三
相关试题推荐
曲线y=的渐近线的条数为().
已知随机变量X1(n=1,2,…)相互独立且都在(一1,1)上服从均匀分布,根据独立同分布中心极限定理有()(结果用标准正态分布函数Ф(x)表示)
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
设A,B是n阶矩阵,则下列结论正确的是()
设a>0为常数,则级数
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
下列反常积分其结论不正确的是
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
的最大项为_______.
求∫(arccosx)2dx.
随机试题
下列句子中画线的词,与现代汉语用法相同的有()。
下列项目中属于会计要素的是()
CRM的主要功能有()
A.噎膈痰气交阻证B.噎膈肝气郁结证C.噎膈气虚阳微证D.噎膈瘀血内结证E.噎膈津亏热结证补气运脾汤用以治疗
教师对学生的爱是教师热爱教育事业最直接、最集中的表现。()
按照我国有关仲裁的法律规定,属于双方当事人之间仲裁得以进行的必要条件是()。
根据以下资料,回答下列问题。2011年我国全年货物进出口总额36421亿美元,比上年增长22.5%。其中,出口18986亿美元,增加20.3%;进口17435亿美元,增长24.9%。进出口差额(出口值与进口值差额的绝对值)1551亿美元,比上年减
根据我国《民法典》规定下列由业主共同决定的事项中,应当经参与表决专有部分面积3/4以上的业主且参与表决人数3/4以上的业主同意的是()。
There’snoquestionthattheEarthisgettinghotter.Therealquestionsare:Howmuchofthewarmingisourfault,andarewe【C
A、Theyarethesmallestsatellites.B、Theyaremadebycollegestudents.C、Theyarepoweredbywater.D、TheyarebackedbyNASA.
最新回复
(
0
)