首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若y1,y2是二阶非齐次线性微分方程(1)的两个不同的特解,证明: y〞+P(x)yˊ+Q(x)y=f(x) (1) (1)y1,y2是线性无关的; (2)对任意实数λ,y=λy1+(1-λ)y2是方程(1)的解.
若y1,y2是二阶非齐次线性微分方程(1)的两个不同的特解,证明: y〞+P(x)yˊ+Q(x)y=f(x) (1) (1)y1,y2是线性无关的; (2)对任意实数λ,y=λy1+(1-λ)y2是方程(1)的解.
admin
2020-03-10
52
问题
若y
1
,y
2
是二阶非齐次线性微分方程(1)的两个不同的特解,证明:
y〞+P(x)yˊ+Q(x)y=f(x) (1)
(1)y
1
,y
2
是线性无关的;
(2)对任意实数λ,y=λy
1
+(1-λ)y
2
是方程(1)的解.
选项
答案
证: 设微分方程为y〞+P(x)yˊ+Q(x)y=f(x). (1)因为y
1
,y
2
是方程的特解,则有 y〞
1
+P(x)yˊ
1
+Q(x)y
1
=f(x), ① y〞
2
+P(x)yˊ
2
+Q(x)y2=f(x), ② 假定y
1
,y2线性相关,则y
1
/y
2
=k,k为常数,将y
1
=ky
2
代入①式, k[y〞
2
+P(x)yˊ
2
+Q(x)y
2
]=f(x)=kf(x),f(x)≠0,故k=1,y
1
=y
2
与已知矛盾,所以y
1
,y
2
是线性无关的. (2)y
1
,y
2
是非齐次方程的解,且y
1
≠y
2
,则y
1
-y
2
是对应齐次方程,即y〞+P(x)yˊ+Q(x)y=0的一个解 y=λy
1
+(1-λ)y
2
=λ(y
1
-y
2
)+y
2
, 由非齐次方程解的结构知y=λy
1
+(1-λ)y
2
是y〞+P(x)+Q(x)y=f(x)的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/2VD4777K
0
考研数学三
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.正确的个数为()
设f(x)是不恒为零的奇函数,且f’(0)存在,则g(x)=().
设随机变量X的概率密度为f(x),则下列函数中一定可以作为概率密度的是
设随机变量X的概率分布为P{X=k}=,k=0,1,2,…,则常数a=
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是()
设收敛,则下列正确的是().
曲线段(如图所示)的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分等于()
求函数的间断点,并判别其类型。
随机试题
室温下,0.10mol.L-1糖水溶液的渗透压为()。
汗出恶风,周身酸楚,时寒时热,舌苔薄白,脉浮缓。其治法是
个人资本金是指其他法人单位以其依法可以支配的资产投入企业形成的资本金。()
“主营业务收入”科目按其所归属的会计要素不同,属于()类科目。
某股票的β值是1.3,市场组合的年预期收益率为8%,无风险利率为3%,则该股票的要求回报率为()
关于龙的形象,自古以来就有“角似鹿、头似驼、眼似兔、项似蛇、腹似蜃、鳞似鱼、爪似鹰、掌似虎、耳似牛”的说法。这表明()。
经济政策手段
若intx=1,y=2;则计算表达式y+=y-=x*=y后的y值是()。
Theoldprofessorwon’tbepresentatthecelebrationparty.
A、Sheplanstostayhereforfourmonths.B、ShethinksherEnglishisadvanced.C、She’sgoingtohavethepermitextended.D、She
最新回复
(
0
)