首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。 求常数a,b及所用的正交变换矩阵Q;
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。 求常数a,b及所用的正交变换矩阵Q;
admin
2018-02-07
45
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
一2x
1
x
2
—2x
1
x
3
+2ax
2
x
3
通过正交变换化为标准形2y
1
2
+2y
2
2
+by
3
2
。
求常数a,b及所用的正交变换矩阵Q;
选项
答案
二次型矩阵及其对应的标准形矩阵分别为 [*] 由矩阵B可知矩阵A的特征值为2,2,b。由矩阵A的迹tr(A)=3=2+2+b可得b=一1。 由于2是A的二重特征值,而实对称矩阵A必可相似对角化,所以矩阵A的对应于特征值2的线性无关的特征向量有两个。于是矩阵2E一A的秩为1,而 2E-A=[*], 所以a=一1。 由(λ
i
E—A)x=0(i=1,2,3)解得特征值λ
1
=λ
2
=2和λ
3
=一1对应的特征向量分别为 α
1
=(1,0,一1)
T
,α
2
=(0,1,一1)
T
,α
3
=(1,1,1)
T
, 由于实对称矩阵的属于不同特征值的特征向量正交,所以先将α
1
,α
2
正交化,即 β
1
=α
1
=(1,0,一1)
T
,β
2
=α
2
一[*](一1,2,一1)
T
, 再将β
1
,β
2
,α
3
单位化,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2Xk4777K
0
考研数学二
相关试题推荐
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设f(x)=2|x-a|(其中a为常数),求fˊ(x).
设f(x)在[0,1]上连续,取正值且单调减少,证明
设f(x+y,x-y)=ex2+y2(x2-y2),求函数f(x,y)和的值.
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
函数yx=A2x+8是下面某一差分方程的通解,这个方程是[].
若f(x)是连续函数,证明
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
随机试题
下列各项指标中,既能够反映营运能力。也与短期偿债能力相关的有()。
患者男,22岁。因发热、伴淋巴结无痛进行性肿大2个月入院。既往无输血史。入院后确诊为非霍奇金淋巴瘤。给予化疗和放疗治疗后,病情明显好转。3个月后又复发、高热、伴消化道出血。淋巴结、肝、脾大。化验全血细胞减少,周围血见到幼稚淋巴细胞,骨穿确诊为淋巴瘤合并淋巴
急性胰腺炎时,血清脂肪酶升高可持续
下列化验检查中属于自身抗体检测的是
注册会计师进行年度会计报表审计时,应对被审计单位的内部审计进行了解,并可以利用内部审计的工作成果,这是因为( )。
简述态度与品德的关系。
马晓敏是眼科医院眼底手术的一把刀,也是湖城市最好的眼底手术医生。但是,令人费解的是,经马晓敏手术后患者视力获得明显提高的比例较低。以下哪项如果为真,最有助于解释以上陈述?()
高级程序设计语言的特点是()。
EducationinRussiaandtheothernewcountriesfacesespeciallydauntingobstaclesbecausethestrugglingeconomiesofthesena
Themostconsistentlyidentifiedteachereffectivenessvariableistimeontask.Thatis,themoretimethatstudentsspendon
最新回复
(
0
)