首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
admin
2019-07-10
41
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,其中α
1
,α
2
,α
3
,α
4
是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)
T
,证明α
2
,α
3
,α
4
是齐次方程组A
*
x=0的基础解系.
选项
答案
由解的结构知n—r(A)=1,故秩r(A)=3. 又由[*]=0,得α
1
一3α
2
+2α
3
=0. 因A
*
A=|A|E=0,即A
*
(α
1
,α
2
,α
3
,α
4
)=0,故α
2
,α
3
,α
4
都是A
*
X=0的解. 由α
1
=3α
3
—2α
4
与r(A)=3有A=(α
1
,α
2
,α
3
,α
4
)=(3α
3
—2α
4
,α
2
,α
3
,α
4
)→(0,α
2
,α
3
,α
4
),可知α
2
,α
3
,α
4
线性无关. 由r(A)=3得r(A
*
)=1,那么n—r(A
*
)=3. 综上可知,α
2
,α
3
,α
4
是A
*
x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/2bN4777K
0
考研数学二
相关试题推荐
设函数f(x)=∫01|t2-x2|dt(x>0),求f’(x),并求f(x)的最小值。
已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l。若点P的横坐标对时间的变化率为常数v0,则当点P运动到点(1,1)时,l对时间的变化率是_______。
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
试求方程ex=ax2(a>0为常数)的根的个数.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
求证:当x>0时,有不等式arctanx+.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,一1)=______.
设u=f(z),其中z是由z=y+χφ(z)确定的z,y的函数,其中f(z)与φ(z)为可微函数.证明:
设y=y(x)是由方程2y3一2y2+2xy一x2=1确定的,则y=y(x)的极值点是_________.
随机试题
焊工戴耳罩时,不要使耳罩软垫圈与周围皮肤贴合。()
A.鸟苷酸B.尿苷酸C.腺苷酸D.胸苷酸
若在咨询中知晓本单位甲药师的处方调配存在不当之处,执业药师应
下列关于质量保修责任的说法正确的是( )。
下列关于对建设工程监理文件资料发文与登记管理的表述,正确的是()。
韩女士本月工资收入6000元。如果个人缴纳的“三险”比例分别为8%、2%和1%。则韩女士本月应纳所得税()元。
光纤通讯为人类提供了难以想象的巨大通信容量和超高速率。被称为“光纤之父”的是()。
根据下表所示的实验设计方案(a、b为两个自变量,S为被试)。这种设计是
对长度为n的线性表作快速排序,在最坏情况下,比较次数为
在设计数据表时,如果要求“课程安排”表中的“教师编号”必须是“教师基本情况”表中存在的教师,则应该进行的操作是
最新回复
(
0
)