首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
admin
2019-07-10
60
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,其中α
1
,α
2
,α
3
,α
4
是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)
T
,证明α
2
,α
3
,α
4
是齐次方程组A
*
x=0的基础解系.
选项
答案
由解的结构知n—r(A)=1,故秩r(A)=3. 又由[*]=0,得α
1
一3α
2
+2α
3
=0. 因A
*
A=|A|E=0,即A
*
(α
1
,α
2
,α
3
,α
4
)=0,故α
2
,α
3
,α
4
都是A
*
X=0的解. 由α
1
=3α
3
—2α
4
与r(A)=3有A=(α
1
,α
2
,α
3
,α
4
)=(3α
3
—2α
4
,α
2
,α
3
,α
4
)→(0,α
2
,α
3
,α
4
),可知α
2
,α
3
,α
4
线性无关. 由r(A)=3得r(A
*
)=1,那么n—r(A
*
)=3. 综上可知,α
2
,α
3
,α
4
是A
*
x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/2bN4777K
0
考研数学二
相关试题推荐
设f(x)=|x(1-x)|,则()
设f(x),g(x)是恒大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<b时,有()
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x)。若∫0f(x)g(t)dt=x2ex,求f(x)。
下列曲线中有渐近线的是()
利用定积分性质6,估计下列积分值:
设A=相似于对角阵.求:a及可逆阵P,使得P-1AP=A,其中A为对角阵
已知线性方程组(1)a,b为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时,求出方程组的全部解.
设齐次线性方程组.为正定矩阵,求a,并求当时XTAX的最大值.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
随机试题
FTP指的是________。
Aresomepeopleborncleverandothersbornstupid?Orisintelligencedevelopedbyourenvironmentandourexperiences?Strange
妊娠近足月,下列哪项提示胎盘功能低下
如何评定食品和化妆品包装计量检验结果?
消费税最终由消费者负担,为了提高征收效率,降低征税费用,防止税款流失,我国的消费税在()环节征收。
关于施工文件档案管理的说法,正确的是( )。
“见善如不及,见不善如探汤”是习近平总书记系列重要讲话文章中引经据典之一,它出自()。
王某、赵某及孙某临时起意共谋深夜到附近的华丰公司盗窃,在盗窃前三人商量好从华丰公司的后墙进入到其仓库进行盗窃,由孙某负责盗窃所需要的工具及提前查探线路,王某潜入仓库窃取财物,赵某在华丰公司后墙处望风。当晚王某成功进入到华丰公司的仓库,赵某在望风的时候,恰巧
IwasmostsurprisedtohearSusan’smarriage.
Gettingbehindthewheelofacarcanbeanexcitingnewstepinateen’slife.Butalongwiththatexcitementcomesanew【B1】__
最新回复
(
0
)