首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
admin
2019-07-10
36
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,其中α
1
,α
2
,α
3
,α
4
是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)
T
,证明α
2
,α
3
,α
4
是齐次方程组A
*
x=0的基础解系.
选项
答案
由解的结构知n—r(A)=1,故秩r(A)=3. 又由[*]=0,得α
1
一3α
2
+2α
3
=0. 因A
*
A=|A|E=0,即A
*
(α
1
,α
2
,α
3
,α
4
)=0,故α
2
,α
3
,α
4
都是A
*
X=0的解. 由α
1
=3α
3
—2α
4
与r(A)=3有A=(α
1
,α
2
,α
3
,α
4
)=(3α
3
—2α
4
,α
2
,α
3
,α
4
)→(0,α
2
,α
3
,α
4
),可知α
2
,α
3
,α
4
线性无关. 由r(A)=3得r(A
*
)=1,那么n—r(A
*
)=3. 综上可知,α
2
,α
3
,α
4
是A
*
x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/2bN4777K
0
考研数学二
相关试题推荐
微分方程y"+y=x2+1+sinx的特解形式可设为()
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
曲线y=+ln(1+ex)的渐近线的条数为()
设函数f(x)在(-∞,+∞)内连续,其中二阶导数f"(x)的图形如图所示,则曲线y=f(x)的拐点的个数为()
设直线y=kχ与曲线y=所围平面图形为D1,它们与直线χ=1围成平面图形为D2.(1)求k,使得D1与D2分别绕χ轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.求|A*+2E|.
若A~B,证明:存在可逆矩阵P,使得AP~BP.
设连续函数f(x)满足∫0xtf(x—t)dt=1—cosx,求
设D是由x≥0,y≥x与x2+(y一b)2≤b2,x2+(y一a)2≥a2(0<a<b)所围成的平面区域,求
求微分方程χy〞+3y′=0的通解.
随机试题
法律的通过须经过法律制定机关代表中的一定法定人数的赞成,通常普通法律须经过全国人大代表的()
下列既体现了史书的实录精神,义表现了作者鲜明的感情倾向的作品是
刑事诉讼、民事诉讼和行政诉讼的共同点有
6个月患儿,腹泻水样便5天,精神萎靡,眼窝及前囟明显凹陷,四肢稍凉,尿量明显减少,呼吸稍快,血清钠未测,应补给0.9%氯化钠:5%葡萄糖:1.87%乳酸钠的溶液的比例的ml数为
机电安装工程保修期自()之日起计算。
导游人员的身心健康包括()。
下列属于申根签证成员国的是()。
寻寻觅觅,冷冷清清,______。(李清照《声声慢》)
在某住宅小区的居民中,大多数中老年教员都办了人寿保险,所有买了四居室以上住房的居民都办了财产保险。而所有办了人寿保险的都没办理财产保险。如果上述断定是真的,以下哪项关于该小区居民的断定必定是真的?Ⅰ.有中老年教员买了四居室以上的住房。
WheredidtheRomansbuildLondon?
最新回复
(
0
)