首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
admin
2018-04-18
75
问题
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为
,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
选项
答案
由题设及曲率公式,有 [*],(因曲线)y=y(x)是凸的,所以y
’’
<0,|y
’’
|=一y
’’
。) 化简得[*]=一dx,两端同时积分解得 arctany
’
=一x+C
1
。 由题设,曲线上点(0,1)处的切线方程为y=x+1,可知y(0)=1,y
’
(0)=1。 以x=0代入上式,得C
1
=[*]。 [*] (本题选择[*]是因为已知曲线在X=0处有值,且曲线是一条连续曲线,因此该解的范围应该包含X=0在内并且使y(X)连续的一个区间。) 对上式积分得 [*] 又由题设可知y(0)=1,代入上式,得C
2
=1一[*],于是所求的曲线方程为 y=[*]。 由于cos([*]一x)≤1,且lnx在定义域内是增函数,所以当且仅当cos([*]一x)=1时,即x=[*],所以此时y取极大值,极大值为y=1+[*]ln2,显然y在[*]没有极小值。
解析
转载请注明原文地址:https://kaotiyun.com/show/Mkk4777K
0
考研数学二
相关试题推荐
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为().
设其中g(x)是有界函数,则f(x)在x=0处().
[*]
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
设y=f(x)是满足微分方程y〞+yˊ-ex=0的解,且fˊ(xo)=0,则f(x)在().
微分方程y"-4y=e2x的通解为________.
自变量x取哪些值时,抛物线y=x2与y=x3的切线平行?
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量a是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是().
求微分方程y"(zx+y’2)=y’满足初始条件y(1)=y’(1)=1的特解.
设方阵A1与B1合同,A2与B2合同,证明:合同
随机试题
在数据库“bd4.mdb”中有学生成绩表、学生档案表和课程名表。(1)以学生成绩表、学生档案表和课程名表为数据源,建立参数查询“查询1”,通过输入班级ID来查询不及格情况,参数提示为“请输入班级ID”,显示班级编号、姓名、课程名和成绩字段。运行查询
墨子提出的“兼相爱”、“爱无差”反映了古人对( )的向往和追求。
【T1】Dogsaresocialanimalsandwithoutpropertraining,theywillbehavelikewildanimals.Theywillsoilyourhouse,destroy
中医学认为,甲状腺功能亢进症的基本病理是
安全生产领域有一个“南风法则”,即北风和南风比威力,看谁把行人身上的大衣吹掉,北风呼啸,结果行人把大衣裹得更紧,南风徐徐,行人感到春意浓浓,最后脱掉大衣。这一法则反映出安全生产管理必须坚持()的理念。
为使资本充足率与银行面对的主要风险更紧密地联系在一起,《巴塞尔新资本协议》在最低资本金计量要求中,提出()。
下列关于监事会的说法中,正确的有()。
你是某司法机关的工作人员,领导决定为一刑事审判安排人大监督活动,要你来具体负责,你怎么安排?
人们喜欢听对自己说“你好”、“请便”,而不喜欢听“讨厌”、“恶心”这样的话。但是,一些人听到港台腔对自己说“你好”、“请便”也觉得讨厌。这说明,人们对话语的好恶,不仅取决于其含义,而且在于其发音。以下哪项如果为真,能加强上述论证?Ⅰ.一些不
fgets(str,n,fp)函数从文件中读入一个字符串,以下错误的叙述是()。
最新回复
(
0
)