首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
admin
2018-04-18
74
问题
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为
,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
选项
答案
由题设及曲率公式,有 [*],(因曲线)y=y(x)是凸的,所以y
’’
<0,|y
’’
|=一y
’’
。) 化简得[*]=一dx,两端同时积分解得 arctany
’
=一x+C
1
。 由题设,曲线上点(0,1)处的切线方程为y=x+1,可知y(0)=1,y
’
(0)=1。 以x=0代入上式,得C
1
=[*]。 [*] (本题选择[*]是因为已知曲线在X=0处有值,且曲线是一条连续曲线,因此该解的范围应该包含X=0在内并且使y(X)连续的一个区间。) 对上式积分得 [*] 又由题设可知y(0)=1,代入上式,得C
2
=1一[*],于是所求的曲线方程为 y=[*]。 由于cos([*]一x)≤1,且lnx在定义域内是增函数,所以当且仅当cos([*]一x)=1时,即x=[*],所以此时y取极大值,极大值为y=1+[*]ln2,显然y在[*]没有极小值。
解析
转载请注明原文地址:https://kaotiyun.com/show/Mkk4777K
0
考研数学二
相关试题推荐
若f(x)的导函数是sinx,则f(x)有一个原函数为().
这是求隐函数在某点的全微分.这里点(1,0,-1)的含意是z=z(1,0)=-1.[*]
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
求c(c>0)的值,使两曲线y=x2与y=cx3所围成的图形的面积为2/3.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方程组的通解.
求解下列微分方程:(1)xyˊ-y[ln(xy)-1]=0;(3)(1+ex)yyˊ=ex.满足y|x=1=1的特解.
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
若x→0时,与xsinx是等价无穷小,则a=________.
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)