首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,且A~B。 (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设A=,且A~B。 (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2021-11-15
53
问题
设A=
,且A~B。
(1)求a;
(2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0,得A,B的特征值为 λ
1
=-1,λ
2
=1,λ
3
=2. 当λ
1
=-1时,由(-E-A)X=0即(E+A)X=0得ξ
1
=(0,-1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
2
=(0,1,1)
T
; [*] 当λ=-1时,由(-E-B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
=(1,0,0)
T
; [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2ey4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续可导,且f(a)=0,证明:.
设f(x)在[0,1]上连续,f(0)=0,.证明:存在ε∈(0,1),使得.
设f(x)是连续函数。若|f(x)|≤k,证明:当x﹥0时,有|y(x)|≤.
设f(x)是连续函数。求初值问题的解,其中a>0.
设u=u(x,y,z)连续可偏导,令.若,证明:u仅为θ与Φ的函数。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
向量组a1,a2,...am线性无关的充分必要条件是()。
设,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
二阶常系数非齐次线性方程y’’-5y’+6y=2e2x的通解为y=__________。
随机试题
全腹臌隆多见于下列哪种疾病
与幽门螺杆菌感染密切相关的疾病是
石先生,男,56岁,患尿毒症,精神萎靡。下腹无胀满,24小时尿量为60ml。请问患者的排尿状况属于
孕妇,第1胎,妊娠38周以先兆临产入院,其最可靠的依据是
保教人员给幼儿皮肤擦药要注意药物浓度和剂量,这是因为幼儿皮肤()。
现场教学和个别指导是中小学教学的( )。
教师通过记录课外活动中学生的攻击行为来研究攻击和性别的关系,这种研究方法是()。
城市学校是一所学校的名称。
Oldpeoplearealwayssayingthattheyoungarenotwhattheywere.Thesame【C1】______ismadefromgenerationtogenerationand
SittinginabackroomatLondon’sBarbicanartscenter,whichishostingtheGameOnExhibition,HenryJenkinsdeliversaline
最新回复
(
0
)