首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( )。
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( )。
admin
2020-03-01
89
问题
设Φ
1
(x),Φ
2
(x),Φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( )。
选项
A、C
1
[Φ
1
(x)+Φ
2
(x)]+C
2
Φ
3
(x)
B、C
1
[Φ
1
(x)-Φ
2
(x)]+C
2
Φ
3
(x)
C、C
1
[Φ
1
(x)+Φ
2
(x)]+C
2
[Φ
1
(x)-Φ
3
(x)]
D、C
1
Φ
1
(x)+C
2
Φ
2
(x)+C
3
Φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为Φ
1
(x),Φ
2
(x),Φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,所以Φ
1
(x)-Φ
3
(x),Φ
2
(x)-Φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,于是方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[Φ
1
(x)-Φ
3
(x)]+C
2
[Φ
2
(x)-Φ
3
(x)]+Φ
3
(x),
即C
1
Φ
1
(x)+C
2
Φ
2
(x)+C
3
Φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选D.
转载请注明原文地址:https://kaotiyun.com/show/pAA4777K
0
考研数学二
相关试题推荐
设f(χ)=χ-sinχcosχcos2χ,g(χ)=,则当χ→0时f(χ)是g(χ)的
关于函数y=f(x)在点x0的以下结论正确的是()
设随机变量X的概率密度为f(x),且有f(一x)=f(x),F(x)为X的分布函数,则对任意实数a,有()
设A是任一n阶矩阵,下列交换错误的是
设方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=()
曲线在点(0,1)处的法线方程为_______.
计算6阶行列式=_______.
交换积分次序∫02dx∫x2xf(x,y)dy=________.
计算n阶行列式D=
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
随机试题
下列各项属于元朝君主加强中央集权的措施的是()。
混合性血栓见于
甲、乙、丙三人系同村农民,村里重新调整土地以后,三人均主张自己对某块土地有承包权。争议发生后,三人互不相让,发展到相互殴打以致毁坏对方的房屋和家具。乡人民政府得知此事后,派工作人员到该村进行调查。后乡政府作出了该块土地的承包权归甲所有的处理决定。乙、丙均对
当电磁辐射体的工作频率低于()时,应对工作场所的电场强度和磁场强度分别测量。
下列不属于基本分析特点的是()。
在房地产投资分析中,()又称大修理基金,是业主或其委托的物业管理公司定期存入的用于支付未来费用的资金。
关于公文“模糊语言”的实质,下列表述不正确的一项是( )。下列各句中,属于语言模糊的一项是( )。
据法院的法官介绍,合议庭将根据被告犯罪事实和情节、对社会的危害程度及司法所的被告平时表现等材料,对被告是否具有缓刑的条件形成______意见。填入划横线部分最恰当的一项是()。
某社区服务中心每个月均对居民进行“社区工作满意度”调查。经对比发现,2月份的居民满意度是85分,比1月份上升了20%,3月份的居民满意度又比2月份下降了20%。则3月份的居民满意度和1月份相比()。
对A市居民参加体育锻炼的情况进行的调查表明,经常参加体育锻炼的居民数近两年来不断上升,而某健身中心的顾客数略有下降。以下各项除了哪一项,都有助于解释上述矛盾?
最新回复
(
0
)