首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( )。
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( )。
admin
2020-03-01
70
问题
设Φ
1
(x),Φ
2
(x),Φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( )。
选项
A、C
1
[Φ
1
(x)+Φ
2
(x)]+C
2
Φ
3
(x)
B、C
1
[Φ
1
(x)-Φ
2
(x)]+C
2
Φ
3
(x)
C、C
1
[Φ
1
(x)+Φ
2
(x)]+C
2
[Φ
1
(x)-Φ
3
(x)]
D、C
1
Φ
1
(x)+C
2
Φ
2
(x)+C
3
Φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为Φ
1
(x),Φ
2
(x),Φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,所以Φ
1
(x)-Φ
3
(x),Φ
2
(x)-Φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,于是方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[Φ
1
(x)-Φ
3
(x)]+C
2
[Φ
2
(x)-Φ
3
(x)]+Φ
3
(x),
即C
1
Φ
1
(x)+C
2
Φ
2
(x)+C
3
Φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选D.
转载请注明原文地址:https://kaotiyun.com/show/pAA4777K
0
考研数学二
相关试题推荐
设A是3阶矩阵,将A的第2行加到第1行上得B,将B的第1列的-1倍加到第2列上得C.则C=().
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(a1,a2,a3),Q=(a1+a2,a2,a3),则QTAQ为
方程3x=2x2+1的实根个数是()
设α1,α2,α3是AX=0的基础解系,则该方程组的基础解系还可表示成().
设α1,α2,…,αs均为n维向量,下列结论不正确的是【】
设a为常数,f(x)=aex一1一x一,则f(x)在区间(一∞,+∞)内的零点个数情况为()
设A是n阶矩阵,α是n维列向量,若=r(A),则线性方程组()
设f(x)=.则在点x=1处
将∫01dy∫0yf(x2+y2)dx化为极坐标下的二次积分为__________.
随机试题
“凡是能言语、能思维、能制造和使用工具的动物都是人。”这属于思维过程中的()
用DDD进行药物利用研究的优点不包括:
甲状腺腺泡细胞分泌的激素是肾上腺皮质球状带分泌的激素是
某城镇污水处理厂的平均流量为1.5m3/s,总变化系数Kz=1.3。取曝气沉沙池最大时流量的停留时间为2min,则所需曝气沉沙池的总容积为()。
投资主体是为了获得未来的货币增值或收益而投资,投资是()。
下列应税消费品同时适用定额和定率税率的是()。
法人对行政机关作出的冻结财产等行政强制措施不服的,应先向人民法院提起行政诉讼,人民法院不予受理的,才可申请行政复议。()
2009—2013年我国货物对外贸易为()。
一位美国学者指出,第二次鸦片战争期间,美国只是“给予联军以道义上的支持和合作”,却在战后获得了很多权益。其中一项权益是:
儿童期学习的特点主要表现在()方面。
最新回复
(
0
)