首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
admin
2016-09-19
119
问题
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A
-1
和B
-1
的关系.
选项
答案
记E
ij
为初等矩阵 [*] 则B=E
ij
A,|B|=|E
ij
A|=|E
ij
||A|=-|A|≠0,故B可逆,且 B
-1
=(E
ij
A)
-1
=A
-1
E
ij
-1
=A
-1
E
ij
. 故知B的逆矩阵可由A的逆矩阵交换第i列和第j列之后得到.
解析
转载请注明原文地址:https://kaotiyun.com/show/2jT4777K
0
考研数学三
相关试题推荐
3/4
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
求常数a、b、c的值,使函数f(x,y,z)=axy2+byz+cx3z2在点(1,-1)处沿z轴正方向的方向导数成为各方向的方向导数中的最大者,且此最大值为6
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
A是n阶矩阵,且A3=0,则().
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
随机试题
唯物辩证法认为,发展的实质是()
机化是指
免疫性非溶血性发热性输血反应的主要原因和发病机制是
骨髓炎的好发部位是
下列资料中,属于建设项目竣工验收的工程技术资料验收内容的是()。
下列关于有限责任公司章程的表述中,符合公司法律制度规定的有()。
Thankyouforagreatevening.Ireallyenjoyed______.
有居民举报,有人在你分管的辖区里倒卖赃物。作为社区民警你该如何处理?
书籍:纸浆:纸张
在窗体中添加了一个文本框和一个命令按钮(名称分别为tText和bCommanD,并编写了相应的事件过程。运行此窗体后,在文本框中输入一个字符,则命令按钮上的标题变为“计算机等级考试”。以下能实现上述操作的事件过程是
最新回复
(
0
)