首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且满足 Aα1=α1+2α2+α3,A(α1+α2)=2α1+α2+α3,A(α1+α2+α3)=α1+α2+2α3,则|A|=____________.
设A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且满足 Aα1=α1+2α2+α3,A(α1+α2)=2α1+α2+α3,A(α1+α2+α3)=α1+α2+2α3,则|A|=____________.
admin
2019-08-11
71
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维线性无关列向量,且满足
Aα
1
=α
1
+2α
2
+α
3
,A(α
1
+α
2
)=2α
1
+α
2
+α
3
,A(α
1
+α
2
+α
3
)=α
1
+α
2
+2α
3
,则|A|=____________.
选项
答案
一4
解析
方法一 由题设条件
Aα=α
1
+2α
2
+α
3
,A(α
1
+α
2
)=2α
1
+α
2
+α
3
,A(α
1
+α
2
+α
3
)=α
1
+α
2
+2α
3
,
故
两边取行列式,得
因α
1
,α
2
,α
3
线性无关,所以|[α
1
,α
2
,α
3
]|≠0,又
故有
方法二 Aα
1
=α
1
+2α
2
+α
3
,A(α
1
+α
2
)=2α
1
+α
2
+α
3
,
故 Aα
2
=A(α
1
+α
2
)一Aα
1
=α
1
—α
2
,
A(α
1
+α
2
+α
3
)=α
1
+α
2
+2α
3
,
Aα
3
=A(α
1
+α
2
+α
3
)-A(α
1
+α
2
)=α
3
一α
1
,
故 [Aα
1
,Aα
2
,Aα
3
]=A[α
1
,α
2
,α
3
]=[α
1
+2α
2
+α
3
,α
1
一α
2
,α
3
一α
1
]
两边取行列式,因|[α
1
,α
2
,α
3
]|≠0,则
或P=[α
1
,α
2
,α
3
]可逆,得
相似矩阵有相同的行列式,故
转载请注明原文地址:https://kaotiyun.com/show/2kN4777K
0
考研数学二
相关试题推荐
设A=,则
A=,正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
数列的最大项为________.
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,a,b为非负数,求证:∈(0,1),有|f’(c)|≤2a+b.
微分方程2y"=3y2满足初始条件y(-2)=1,y’(-2)=1的特解为_______.
若向量组α1=(1,3,4,一2)T,α2=(2,1,3,t)T,α3=(3,一1,2,0)T线性相关,则t=____________.
设f(x)在x=x0的某邻域内存在二阶导数,且则存在点(x0,f(x0))的左、右邻域U-与U+使得()
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求D的面积A;
设齐次线性方程组Ax=O为在方程组(*)的基础上增添一个方程2x1+ax2-4x3+bx4=0,得齐次线性方程组Bx=0为[img][/img]求方程组(*)的基础解系和通解;
当x→0时,-1~cos2x-1,则a=_______
随机试题
某商业建筑,东西长100m,南北宽60m,建筑高度26m,室外消火栓设计流量为40L/s,南侧布置消防扑救面。沿该建筑南侧消防扑救面设置的室外消火栓数量,不宜少于()个。
患者因受精神刺激突发二便失禁,骨酸痿厥或遗精。其病机是患者因受精神刺激而气逆喘息,面红口赤,呕血,昏厥卒倒。其病机是
下列有抗原性的纤维蛋白溶解药是
外加剂储存时应当至少离地的高度和离墙的距离分别是()。
下列各项中,可能与“应付职工薪酬”科目贷方对应的有()。
沂源:苹果:水果
某种商品有小箱和大箱两种包装,一大箱这种商品有400件,张和王同时开始制造这种商品,制造一小箱和一大箱这种商品后,张比王多做50件。如果王此时的效率提高100%,并与张再共同制造一大箱这种商品,则王制造的总件数比张多50件。问一小箱这种商品有多少件:
下列成语及其出处的对应关系错误的是()。
Manhasbeenstoringupusefulknowledgeabouthimselfandtheuniverseattheratewhichhasbeenspiralingupwardfor10,000y
【B1】【B8】
最新回复
(
0
)