首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
现有四个向量组 ①(1,2,3)T,(3,-1,5)T,(0,4,-2)T,(1,3,0)T; ②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T; ③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
现有四个向量组 ①(1,2,3)T,(3,-1,5)T,(0,4,-2)T,(1,3,0)T; ②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T; ③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
admin
2017-01-14
65
问题
现有四个向量组
①(1,2,3)
T
,(3,-1,5)
T
,(0,4,-2)
T
,(1,3,0)
T
;
②(a,1,b,0,0)
T
,(c,0,d,2,0)
T
,(e,0,f,0,3)
T
;
③(a,1,2,3)
T
,(b,1,2,3)
T
,(c,3,4,5)
T
,(d,0,0,0)
T
;
④(1,0,3,1)
T
,(-1,3,0,-2)
T
,(2,1,7,2)
T
,(4,2,14,5)
T
。
则下列结论正确的是( )
选项
A、线性相关的向量组为①④;线性无关的向量组为②③。
B、线性相关的向量组为③④;线性无关的向量组为①②。
C、线性相关的向量组为①②;线性无关的向量组为③④。
D、线性相关的向量组为①③④;线性无关的向量组为②。
答案
D
解析
向量组①是四个三维向量,从而线性相关,可排除B。
由于(1,0,0)
T
,(0,2,0)
T
,(0,0,3)
T
线性无关,添上两个分量就可得向量组②,故向量组②线性无关。所以应排除C。
向量组③中前两个向量之差与最后一个向量对应分量成比例,于是α
1
,α
2
,α
4
线性相关,那么添加α
3
后,向量组③必线性相关。应排除A。
由排除法,所以应选D。
转载请注明原文地址:https://kaotiyun.com/show/3Du4777K
0
考研数学一
相关试题推荐
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设m,n均是正整数,则反常积分的收敛性
随机试题
多囊卵巢综合征的临床表现正确的是
选择培养基中加入抑制剂能够抑制标本中杂菌的生长,其作用机制为A.能够抑制大肠埃希菌B.能够抑制革兰阳性菌C.能够抑制厌氧菌D.能够抑制变形杆菌E.能够抑制产气肠杆菌加入枸橼酸钠的作用为
伤寒患者出现玫瑰疹,多见于()
原材料选择主要取决于项目的技术要求及原材料供应市场的状况,但其决定因素是()。
评标委员会否决()或者()后,因有效投标不足三个使得投标明显缺乏竞争的,评标委员会可以否决全部投标,招标人应当()。
下列各项中,必须执证上岗的是()。
假如把一个音符分成三部分来代替基本划分的________部分,便形成三连音。
B请简要解释或回答下列题项(朝鲜语专业翻译硕士考生专做)请写出韩国的特别市和广域市的名称。
不同厂家的交换机,要实现VLANTrunk功能时,必须在直接相连的两台交换机端口上都封装______协议。
Thesubjectofthislectureishorology,thescienceofmeasuringtime.The【D1】_______hascomealongwaysinceancienttime.It
最新回复
(
0
)