首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4维列向量组α1,α2,…,α3线性无关,若非零向量βi(i=1,2,3,4)与α1,α2,…,α3均正交,则R(β1,β2,…,β3,β4)=( )
已知4维列向量组α1,α2,…,α3线性无关,若非零向量βi(i=1,2,3,4)与α1,α2,…,α3均正交,则R(β1,β2,…,β3,β4)=( )
admin
2019-02-23
47
问题
已知4维列向量组α
1
,α
2
,…,α
3
线性无关,若非零向量β
i
(i=1,2,3,4)与α
1
,α
2
,…,α
3
均正交,则R(β
1
,β
2
,…,β
3
,β
4
)=( )
选项
A、1。
B、2。
C、3。
D、4。
答案
A
解析
设α
1
=(a
11
,a
12
,a
13
,a
14
)
T
,α
2
=(a
21
,a
22
,a
23
,a
24
)
T
,α
3
=(a
31
,a
32
,a
33
,a
34
)
T
。
由题设知,β
i
与α
1
,α
2
,α
3
均正交,即内积β
i
T
α
j
=0(i=1,2,3,4;j=1,2,3),
亦即β
i
(i=1,2,3,4)是齐次方程组
的非零解。
由于α
1
,α
2
,α
3
线性无关,故系数矩阵的秩为3。所以基础解系中含有4-3=1个解向量。从而R(β
1
,β
2
,β
3
,β
4
)=1。故应选(A)。
转载请注明原文地址:https://kaotiyun.com/show/3KM4777K
0
考研数学一
相关试题推荐
设0<a<b,证明:.
设f(x)连续,f(0)=1,令F(t)=f(x2+y2)dxdy(t≥0),求F’’(0).
证明:当x>0时,.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
微分方程xy’=+y的通解为________.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令Y=|Xi一μ|,求Y的数学期望与方差.
设A从原点出发,以固定速度ν0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度ν1朝A追去,求B的轨迹方程.
设X1,X2,…,Xn,…为独立同分布序列,且X服从参数为的指数分布,则当n充分大时,Zn=Xi近似服从______.
随机试题
设f(x)=,则f’(1)=__________________。
行腹腔镜胆囊切除术时,麻醉方法宜选择
房地产经纪合同中应当有()签名。
“原材料”账户的期初余额为700元,本期贷方发生额为3000元,期末余额为2500元,该账户的借方发生额为()元。
《巴塞尔新资本协议》在三大支柱之一的最低资本要求的创新之处包括()。
下列各项中属于公司分立的有()。
亮亮在玩搭小凳子,贝贝在玩小汽车,他们谁都没有注意到明明在他们周围跑来跑去地玩小飞机,因此这些小朋友进行的游戏属于独自游戏。()
通货膨胀是由于()。
当前,食品安全日益引起人们的重视,有机食品越来越受到人们的青睐。有机食品是指在种植过程中不采用转基因技术,不使用农药、化肥、激素的产品。因此有机食品产量低,价格也比普通食品高出许多。造成有机食品与普通食品价格差异的根本原因是()。
【B1】【B9】
最新回复
(
0
)