首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4维列向量组α1,α2,…,α3线性无关,若非零向量βi(i=1,2,3,4)与α1,α2,…,α3均正交,则R(β1,β2,…,β3,β4)=( )
已知4维列向量组α1,α2,…,α3线性无关,若非零向量βi(i=1,2,3,4)与α1,α2,…,α3均正交,则R(β1,β2,…,β3,β4)=( )
admin
2019-02-23
28
问题
已知4维列向量组α
1
,α
2
,…,α
3
线性无关,若非零向量β
i
(i=1,2,3,4)与α
1
,α
2
,…,α
3
均正交,则R(β
1
,β
2
,…,β
3
,β
4
)=( )
选项
A、1。
B、2。
C、3。
D、4。
答案
A
解析
设α
1
=(a
11
,a
12
,a
13
,a
14
)
T
,α
2
=(a
21
,a
22
,a
23
,a
24
)
T
,α
3
=(a
31
,a
32
,a
33
,a
34
)
T
。
由题设知,β
i
与α
1
,α
2
,α
3
均正交,即内积β
i
T
α
j
=0(i=1,2,3,4;j=1,2,3),
亦即β
i
(i=1,2,3,4)是齐次方程组
的非零解。
由于α
1
,α
2
,α
3
线性无关,故系数矩阵的秩为3。所以基础解系中含有4-3=1个解向量。从而R(β
1
,β
2
,β
3
,β
4
)=1。故应选(A)。
转载请注明原文地址:https://kaotiyun.com/show/3KM4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
确定正数a,b的值,使得=2.
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
设y=y(x)由方程ey+6xy+x2一1=0确定,求y’’(0).
某厂家生产的一种产品同时在两个市场上销售,售价分别为P1,P2,销售量分别为q1,q2,需求函数分别为q1=24—0.2p1,q2=10一0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
设μ=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数,证明:.
设随机变量x~N(μ,σ2),且方程x2+4x+X=0无实根的概率为,则μ=_______.
设A从原点出发,以固定速度ν0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度ν1朝A追去,求B的轨迹方程.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
随机试题
阐述医疗机构现行药品分级管理制度的要点。
患者,男,建筑工人,左下肢外伤后未得到及时、正确的处理而导致感染破伤风梭菌。为该患者更换敷料后,污染敷料的处理方法是
内墙面抹灰分层中,起墙面找平作用的是()层。
假设某公司每年需外购零件3600件,该零件单位变动储存成本为20元,一次订货成本为25元,单位缺货损失为100元。在交货期内,生产需要量及其概率如下:要求:计算交货期内平均需求;
学生的学习是一种规范化的学习。()
学生:教室( )
整个教学工作的中心环节是
设A为4×5矩阵,且A的行向量组线性无关,则()
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
PASSAGETWOWhataregameswidelyusedtobeinschoolsandbusinesses?
最新回复
(
0
)