首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
admin
2017-08-31
27
问题
设α
1
,α
2
,α
3
为四维列向量组,α
1
,α
2
线性无关,α
3
=3α
1
+2α
2
,A=(α
1
,α
2
,α
3
),求AX=0的一个基础解系.
选项
答案
方法一 AX=0[*]x
1
α
1
+x
2
α
2
+x
3
α
3
=0,由α
3
=3α
1
+2α
2
可得(x
1
+3x
3
)α
1
+(x
2
+2x
3
)α
2
=0, 因为α
1
,α
2
线性无关,因此[*]. 方法二 由r(A)=2可知AX=0的基础解系含有一个线性无关的解向量,而3α
1
+2α
2
一α
3
=0,因此ξ=[*]为AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/SPr4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式;(Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
设A,B为三阶矩阵,A~B,λ1=一1,λ2=1为矩阵A的两个特征值,又,则=_________
两容器盛盐水20L,浓度为15g/L,现以1L/min的速度向第一只容器注入清水(同时搅拌均匀),从第一只容器以1L/min的速度将溶液注入第二只容器,搅拌均匀后第二只容器以1L/min的速度排出,则经过________分钟第一只容器溶液浓度为原来的一
设在全平面上有0,则下列条件中能保证f(x1,y1)
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
设密度为1的立体Ω由不等式表示,试求Ω绕直线x=y=z的转动惯量.
设u=f(xy,x2-y2,x),其中函数f有二阶连续偏导数,试求:(Ⅰ)du;(Ⅱ)
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
设f(x)=,求f(x)的间断点,并判断其类型.
随机试题
在开庭审理过程中,公诉人用多媒体方式出示了被告人留在犯罪现场的鞋子,那么这个证据是什么证据?()
血小板增多见于
重症水痘可发生
关于在城市规划区内以出让方式取得国有土地使用权,下列说法不正确的是:()
国际机电工程项目合同风险中,属于环境风险因素的有()。
在少数民族节庆中过十月节,每天有近百张桌子连在一起举行盛大街心宴的是()。
大数定理是指在随机试验中,每次出现的结果不同,但是大量重复试验出现的结果的平均值却几乎总是接近于某个确定的值,即该事件发生的概率。根据上述定义,下列事件能够用大数定理解释的是()。
下列不是唐玄宗组织编撰的是()。
健康取决于良好的食物,清新的空气和充足的睡眠。
Thenumberofexecutivebranchemployeesretiringthisfiscalyear,whichendsnextmonth,isontracktobenearlytwicetheto
最新回复
(
0
)