首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).
admin
2017-08-31
44
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件是( ).
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表示
B、向量组β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表示
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价
D、矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价
答案
D
解析
因为α
1
,α
2
,…,α
m
线性无关,所以向量组α
1
,α
2
,…,α
m
的秩为m,向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件是其秩为m,所以选(D).
转载请注明原文地址:https://kaotiyun.com/show/ZPr4777K
0
考研数学一
相关试题推荐
设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵.若a11,a12,a13为三个相等的正数,则a11为().
本题有以下两种较为简单的解法:[*]
[*]
设φ1(x),φ2(x),φ3(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为().
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x3+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(Ⅰ)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次型的
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T,(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,证明α1,
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
以下4个结论:(1)教室中有r个学生,则他们的生日都不相同的概率是;(2)教室中有4个学生,则至少两个人的生日在同一个月的概率是;(3)将C,C,E,E,I,N,S共7个字母随机地排成一行,恰好排成英文单词SCIENCE的概率是;(4)袋中有编号为
设M=cos2xdx,N=(sin3x+cos4x)dx,P=(x2sin3x—cos4x)dx,则有().
随机试题
各国政府都追求的宏观经济目标普遍包括()。
患者男,20岁,体型瘦高。举重物后突感左胸闷、出冷汗,呼吸困难。查体:神志清楚,面色苍白,口唇发绀,呼吸30次/分,右上肺叩诊呈鼓音,听诊呼吸音消失,心率110次/分,律齐。对上述患者,为明确诊断最佳检查应选择
胃与十二指肠溃疡的主要区别A、酸度增高B、长期反复发作C、疼痛有规律性D、上腹局限压痛E、压痛点在中线偏左胃溃疡
对于寿命期不同的互斥方案进行经济评价时,可以采用的动态评价方法是()。
某市政建设集团公司第一项目经理部负责某污水处理厂工程施工,该项目主要包括泵站、集水池、输水管道等单位工程。集水池顶板采用一种刚问世的新型防护材料涂层,被涂层由项目部分包给一专业公司施工。施工过程中,项目部在工程量清单中没有围墙及厂区排水工程,遂向建设单位
商业银行应当在最低资本要求的基础上计提储备资本,储备资本要求为风险加权资产的()。
在非系统的绩效考核方法中,()比排序法更加具体、科学,缺点是随着部门人数的增多,评价的工作量会几何级数递增。
《中华人民共和国义务教育法》规定义务教育必须贯彻国家教育方针,实施素质教育,主要使学生在德智体等方面得到提升。()
我国国有企业改革的方向是()。
建设项目团队过程所使用的技术不包括()。
最新回复
(
0
)