首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(a1,a2,a3)T,α2=(b1,b2,b3)T,α3=(c1,c2,c3)T,α4=(d1,d2,d3)T,则三平面 a1x+b1y+c1z=d1, a2x+b2y+c2z=d2, a3x+b3y+c3z=d3 相交于一条直线的充分必要条件是
设α1=(a1,a2,a3)T,α2=(b1,b2,b3)T,α3=(c1,c2,c3)T,α4=(d1,d2,d3)T,则三平面 a1x+b1y+c1z=d1, a2x+b2y+c2z=d2, a3x+b3y+c3z=d3 相交于一条直线的充分必要条件是
admin
2018-10-12
114
问题
设α
1
=(a
1
,a
2
,a
3
)
T
,α
2
=(b
1
,b
2
,b
3
)
T
,α
3
=(c
1
,c
2
,c
3
)
T
,α
4
=(d
1
,d
2
,d
3
)
T
,则三平面
a
1
x+b
1
y+c
1
z=d
1
,
a
2
x+b
2
y+c
2
z=d
2
,
a
3
x+b
3
y+c
3
z=d
3
相交于一条直线的充分必要条件是( ).
选项
A、r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)
B、r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)=2
C、r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)=3
D、r(α
1
,α
2
,α
3
)=2,且α
1
,α
2
,α
3
,α
4
线性相关
答案
B
解析
选项B,三平面相交于一条直线,等价于由三平面方程联立的方程组
有无穷多解,且通解表达式为空间直线方程η=ξ
0
+Cξ
1
,其中ξ
0
为方程组的一个特解,ξ
1
为导出组的一个基础解系,由此知r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)=2,故选B.
选项A,由r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)知α
4
可以被α
1
,α
2
,α
3
线性表示,即平面之间有交点,但不能具体确定交点集的特征.
选项C,由r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)=3知方程组有唯一解,即平面相交于一点.
选项D,由α
1
,α
2
,α
3
,α
4
线性相关及r(α
1
,α
2
,α
3
)=2,不能说明α
4
可以被α
1
,α
2
,α
3
线性表示,即方程组不一定有解,也即平面未必有公共交点.
转载请注明原文地址:https://kaotiyun.com/show/3Vca777K
本试题收录于:
经济类联考综合能力题库专业硕士分类
0
经济类联考综合能力
专业硕士
相关试题推荐
简述情绪的动机一分化理论。
解决不公平问题的根本方式是()。
人格结构有广义和狭义之分,下列哪项不属于狭义的人格结构?()
_____________是自我意识发展的第二个飞跃期。
如果二变量间呈负相关,那么散点图的形状是()
卡尔·罗杰斯认为建立治疗关系的最基本的条件有()
设x>0,则函数F(x)=的导数为
A、2(x3-y3)B、-2(x3-y3)C、-2(x3+y3)D、2(x3+y3)C将第二、三列加至第一列,得=-2(x+y)(x2-xy+y2)=-2(x3+y3).故选C.
A、a=1,b=1/2B、a=1,b=2C、a=1/2,b=1D、a=1/2,b=2A由于=b,且分母的极限为零,则必定有分子的极限为零,即(a-cosx)=a-1=0,从而得a=1,因此有故选A.
A、 B、 C、 D、 B由于lnx在定义域内为连续函数,因此故选B.本题利用了连续函数的性质:设y=f[g(x)]为复合函数,由y=f(u)与u=g(x)复合而成,若g(x)=u0。存在,而y=f(u
随机试题
在下列断定中,违反矛盾律的是()
除对原发病进行综合治疗外,治疗肺气肿、改善肺功能的重要措施为()
对发行债券的说法中不正确的是()。
下述中正确的是()。
下列各项中,属于会计工作的政府监督主体的有()。
下列各项属于影响实载率的因素有()。
让人高兴的语言往往柔和甜美,所以称之为()
联系实际,谈谈正确儿童观的内容
辐射指的是能量在空间传播的过程。下列关于辐射的说法不成立的是()。
下列选项中,属于唐朝“杂律”规定的内容有()。
最新回复
(
0
)