首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(t)=∫1tex2dx,求∫01t2f(t)dt. (2)设f(x)=∫0πecostdt,求∫0πf(x)cosxdx.
(1)设f(t)=∫1tex2dx,求∫01t2f(t)dt. (2)设f(x)=∫0πecostdt,求∫0πf(x)cosxdx.
admin
2017-12-31
47
问题
(1)设f(t)=∫
1
t
e
x
2
dx,求∫
0
1
t
2
f(t)dt.
(2)设f(x)=∫
0
π
e
cost
dt,求∫
0
π
f(x)cosxdx.
选项
答案
[*] 因为f(1)=0,所以 [*] (2)∫
0
π
f(x)cosxdx=∫
0
π
f(x)d(sinx)=f(x)sinx|
0
π
-∫
0
π
f’(x)sinxdx =-∫
0
π
f’(x)sinxdx=-∫
0
π
e
cosx
sinxdx=∫
0
π
e
cosx
d(cosx) =e
cosx
|
0
π
=e
-1
-e
解析
转载请注明原文地址:https://kaotiyun.com/show/3WX4777K
0
考研数学三
相关试题推荐
设f(x)在(一∞,+∞)上可导,且其反函数存在,记为g(x),若∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1,则当一∞<x<+∞时f(x)=________.
设方阵A1与B1合同,A2与B2合同,证明:合同.
求极限
设函数z=f(u),方程u=φ(u)+∫yxP(t)d£确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1.求
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化。
已知二次型f(x1,x2,x3)一5x12+5x22+cx32一212+613—623的秩为2.指出方程f(x1,x2,x3)=1表示何种二次曲面。
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
设f(x)=则f(x)在点x=0处().
已知当x→0时,与cosx一1是等价无穷小,则常数a=__________.
随机试题
试述明朝的科举制度。
最简单而快速诊断输血时的细菌污染反应的方法是()
下列说法中正确的有()。
甲现有一房屋欲出租给乙,丙为阻止甲的出租行为,称其愿出高价租用甲的房屋,致使甲乙之间的租赁合同没有订立。随后,丙借故说不租用甲的房屋。此时,甲可以要求丙承担( )。
漫画《三代人的抉择》给我们的哲学启示是()。①价值判断和价值选择具有社会历史性②必须遵循社会发展规律做出正确的价值选择③人民群众是社会变革的决定力量④社会存在决定社会意识
能造成生命危险的一次急性失血量至少为总血量的()。
数学教学基本功包括___________、语言表达的技能、组织和调控课堂的技能、___________。
下列我国历史上曾出现的选官制度按时间顺序排列正确的是()。①九品中正制②察举制③科举制④世卿世禄制
陈经理今天将乘飞机赶回公司参加上午10点的重要会议。秘书小张告诉王经理:如果陈经理乘坐的飞机航班被取消,那么他就不能按时到达会场。但事实上该航班正点运行,因此,小张得出结论:陈经理能按时到达会场。王经理回答小张:“你的前提没错,但推理有缺陷;我的结论是:陈
Thestudyofphilosophiesshouldmakeourownideasflexible.Weareallofusapttomake
最新回复
(
0
)