首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
admin
2016-10-20
52
问题
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是A
T
的特征向量.
选项
答案
按特征值定义,对于Aα=λα,经转置得 α
T
A
T
=(Aα)
T
=(Aα)
T
=λα
T
, 因为A
T
A=E,从而 α
T
α=α
T
A
T
Aα=(λα
T
)(λα)=λ
2
α
T
α, 则 (1-λ
2
)α
T
α=0. 因为α是实特征向量,α
T
α=x
1
2
+x
2
2
+…+x
n
2
>0,可知λ
2
=1,由于λ是实数,故只能是1或-1. 若λ=1,从Aα=α,两边左乘A
T
,得到A
T
α=A
T
Aα=α,即α是A
T
关于λ=1的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/3YT4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).求总产量为50件且总成本最小时甲产品的边际成本,并解
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两种要素的价格分别为ρ1和ρ2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
随机试题
下列属于急性重型肝炎病理特点的是
A.膝关节结核B.早期滑膜结核C.髋关节结核D.单纯骨结核E.全关节结核手术清除病灶不合适于()
听神经鞘瘤多发生于听神经的
A.纤维囊壁中含有甲状腺滤泡B.纤维囊壁中含有淋巴样组织C.纤维囊壁中含有微小囊肿D.纤维囊壁中含有皮脂腺E.纤维囊壁中含有较大的血管和神经束甲状舌管囊肿是
旋覆代赭汤治疗天台乌药散治疗
根据《票据法》,支票上可以由出票人授权补记的事项是()。
某地发生洪灾,单位让你组织一场募捐晚会,你怎么组织?
在考生文件夹下,已有“samp0.accdb”和“samp1.accdb”数据库文件。“samp0.accdb”中已建立表对象“tTest”,“samp1.accdb”中已建立表对象“tEmp”和“tSalary”。试按以下要求,完成表的各种操作
•Readthetextbelowaboutsupplier.•Inmostofthelines41-52,thereisoneextraword.Itiseithergrammaticallyincorrec
Shoppingmallshavesomeadvantagesinsufferingfromshorterperiodsof______business.
最新回复
(
0
)