首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x28y2—4x2y2在区域D={(x,y)|x2+4y2≤4,y≥0}上的最大值与最小值.
求函数f(x,y)=x28y2—4x2y2在区域D={(x,y)|x2+4y2≤4,y≥0}上的最大值与最小值.
admin
2019-01-05
128
问题
求函数f(x,y)=x
2
8y
2
—4x
2
y
2
在区域D={(x,y)|x
2
+4y
2
≤4,y≥0}上的最大值与最小值.
选项
答案
首先求f(x,y)在D内其驻点处的函数值.令 [*] 因在D内y>0,从而可解出f(x,y)在D内有且只有两个驻点[*]计算可得 [*] 其次求f(x,y)在D的边界Г
1
={(x,y)||x|≤2,y=0}上的最大值与最小值.把y=0代入f(x,y)的表达式可得f(x,0)=x
2
,不难得出在Г
1
上f(x,y)的最小值为f(0,0)=0,最大值为f(一2,0)=f(2,0)=4. 最后求f(x,y)在D的边界Г
2
={(x,y)|x
2
+4y
2
=4,y≥0}上的最大值与最小值.把[*]代入f(x,y)的表达式可得一元函数 [*] 令[*]可得f(x,y)在,Г
2
内共有三个驻点(0,1),[*]函数f(x,y)在这三个驻点处的函数值分别是 [*] 又因f(x,y)在Г
2
的端点(一2,0)与(2,0)处的函数值为f(一2,0)=f(x,0)=4.比较即知f(x,y)在Г
2
上的最大值为f(0,1)=8,最小值为[*] 比较以上各值可知f(x,y)在D上的最大值为f(0,1)=8,最小值为f(0,0)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/3eW4777K
0
考研数学三
相关试题推荐
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=—1是方阵B的两个特征值,则|A+2AB|=________。
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求:(Ⅰ)乙箱中次品件数的数学期望;(Ⅱ)从乙箱中任取一件产品是次品的概率。
设随机变量X在1,2,3中等可能地取值,随机变量Y在1—X中等可能地取值。求:(Ⅰ)二维随机变量(X,Y)的联合分布律及边缘分布律;(Ⅱ)求在Y=2的条件下X的条件分布。
设随机变量X和Y的联合概率分布为则X2和Y2的协方差Cov(X2,Y2)=________。
设有正项级数是它的部分和。(Ⅰ)证明收敛;(Ⅱ)判断级数是条件收敛还是绝对收敛,并给予证明。
设函数f(t)连续,则二重积分f(r2)rdr=()
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设=1,且f"(x)>0,证明f(x)>x(x≠0)。
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。证明:向量组β,Aβ,A2β线性无关;
计算二重积分其中D={(x,y)|0≤z,y≤1}.
随机试题
扭转型室性心动过速阵发性室性心动过速
A.肝寒犯胃证B.脾胃虚寒证C.少阴虚寒证D.血虚,寒客血脉证E.中焦虚寒的虚劳发热证
下列论述哪个是正确的
下列不能单独使用的控制键是( )。
行政诉讼当事人不服人民法院第一审裁定的.有权在裁定书送达之日起()内提起上诉。
学校组织30个研究生下贫困县支农,你如何组织?
根据宪法规定,城镇中手工业、工业、建筑业、运输业、商业、服务业等行业的各种形式的合作经济是()。(2014单27)
设常数a>0,正项级数收敛,则().
设工程中有Form1、Form2两个窗体,要求单击Form2上的Command1命令按钮,Form2就可以从屏幕上消失,下面的事件过程中不能实现此功能的是( )。
Inbuildingtheworld’slargestadvertisingcompanyoverthepast30years,SirMartinSorrel,chiefexecutiveoftheWPP,hasw
最新回复
(
0
)