首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数p(x)和f(x)在x∈[0,+∞)上连续,且p(x)=a>0,|f(x)|≤b,a和b均为常数.试证:微分方程+p(x)y=f(x)的一切解在x∈[0,+∞)上皆有界.
设函数p(x)和f(x)在x∈[0,+∞)上连续,且p(x)=a>0,|f(x)|≤b,a和b均为常数.试证:微分方程+p(x)y=f(x)的一切解在x∈[0,+∞)上皆有界.
admin
2017-07-26
87
问题
设函数p(x)和f(x)在x∈[0,+∞)上连续,且
p(x)=a>0,|f(x)|≤b,a和b均为常数.试证:微分方程
+p(x)y=f(x)的一切解在x∈[0,+∞)上皆有界.
选项
答案
考察初值问题[*]+p(x)y=f(x), y(0)=y
0
. 对于固定的y
0
,由方程可得相应的特解. 对于任意的y
0
,可得方程的一切解 [*] 由于[*]p(x)=a>0,故由函数极限的保号性:存在M>0,使得x>M时, [*] 故一切解|y(x)|在x∈[0,+∞)上皆有界.
解析
因函数p(x)和f(x)均未具体给出,则用一阶线性微分方程的通解公式(一般是用不定积分表示的)是无法讨论其性质的,故应当用变上限的定积分来表示其通解,以便讨论其性质.
转载请注明原文地址:https://kaotiyun.com/show/3uH4777K
0
考研数学三
相关试题推荐
[*]
设f(x,y)在[a,b]×[c,d]上连续,,证明:gxy=gyx(x,y)=f(x,y)(a<x<b,c<y<d).
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
μ(x,y)=x2-xy+y2,L为抛物线y=x2自原点至点A(1,1)的有向弧段n为L的切向量顺时针旋转π/2角所得的法向量为函数μ沿法向量n的方向导数,计算
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设g(x)二阶可导,且f(x)=求常数a使得f(x)在x=0处连续;
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在[a,b]内存在ξ,使得
随机试题
学龄前儿童的合理膳食原则是什么?
教育是年轻一代成长和社会延续与发展不可缺少的条件,为一切社会所必需,与人类社会共始终。从这个意义上说,教育具有_______特征。
女,66岁。戴下颌可摘局部义齿1周,咀嚼时牙槽嵴压痛。检查:缺失,义齿基托密合,固位稳定性良好,咬合接触紧密,人工牙颊舌径宽度大,对颌为天然牙,缺牙区牙槽嵴低窄,黏膜无明显红肿溃疡。根据Kennedy分类法,患者属于()
采用权益法核算长期股权投资时,下列各项中,能够引起投资企业资本公积发生增减变动的有()。
股票投资的优点主要包括()。
治安行政处罚和刑事处罚一样,都是以公安行政强制力实施的处罚。( )
我国政府采购的原则主要有()。
由水果糖和巧克力糖混合成一堆糖,增加10颗水果糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有巧克力糖多少颗?
利用等价无穷小代换定理,并提出因子esinx,再应用洛必达法则得[*]
已知曲线L为曲面z=与x2+y2=1的交线,则x2y2z2ds=________。
最新回复
(
0
)