首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,a)内可导,f′(x)=β<0.=α>0, 求证:f(x)在(-∞,a)内至少有一个零点.
设f(x)在(-∞,a)内可导,f′(x)=β<0.=α>0, 求证:f(x)在(-∞,a)内至少有一个零点.
admin
2016-10-26
76
问题
设f(x)在(-∞,a)内可导,
f′(x)=β<0.
=α>0, 求证:f(x)在(-∞,a)内至少有一个零点.
选项
答案
由极限的不等式性质,[*]δ>0,当x∈[a-δ,a)时[*]>0,即f(x)<0,也就有f(a-δ)<0.[*]x
0
<a-δ,当x≤x
0
时f′(x)≤[*]<0.于是由微分中值定理知,当x<x
0
,[*]ξ∈(x,x
0
)使得 f(x)=f(x
0
)+f′(ξ)(x-x
0
)≥f(x
0
)+[*](x-x
0
), 由此可得[*]f(x)=+∞. [*]x
1
<a-δ使得f(x
1
)>0.在[x
1
,a-δ]上应用连续函数零点存在性定理,f(x)在(x
1
,a-δ)上至少存在一个零点.
解析
只需由所给条件证明:
x
1
,x
2
,使得f(x
1
)>0,f(x
2
)<0即可.由
>0确定x<a,x靠近a时f(x)的符号,要根据极限的不等式性质来判断.由
f′(x)=β<0确定x<0,|x|充分大时f(x)的符号,要应用微分中值定理(联系函数和它的导数).
转载请注明原文地址:https://kaotiyun.com/show/41u4777K
0
考研数学一
相关试题推荐
设n阶矩阵A的元素全为1,则A的n个特征值是________.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
已知α1=(﹣1,1,a,4)T,α2=(﹣2,1,5,a)T,α3=(a,2,10,1)T是四阶方阵A的属于三个不同特征值的特征向量,则口的取值为().
(I)设f(x1,x2,x3)=x12+2x22+6x32一2x1x2+2x1x3—6x2x3,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定阵;(Ⅱ)设求可逆阵D,使A=DTD.
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
计算下列各题:(Ⅰ)设,其中f(t)三阶可导,且f″(t)≠0,求;(Ⅱ)设求的值.
设求矩阵A可对角化的概率.
随机试题
将拇指屈曲、腕尺偏出现疼痛是用来检查:
中医之“证”的含义说的是
心室肌前负荷增加时
矿井在采掘过程中,只要发生过()次煤(岩)与瓦斯(二氧化碳)突出,该矿井即定为煤(岩)与瓦斯(一氧化碳)突出矿井。
座地式全玻幕墙适用于高度不超过()的墙面。
世界上的汇率制度主要有固定汇率制、浮动汇率制和联系汇率制三种。()
Lookatyoursmartphone.Thinkaboutthedecisionsyouwillmakeonittoday.Youmaysnatchadinner【C1】______,tellyourspous
下列有关测试执行管理的描述中,错误的是A)测试用例执行要求保证测试结果准确完整B)对测试结果的追踪应该可追溯到具体责任人C)测试执行完成后,并不意味着测试项目的结束D)检查完所有测试用例的执行结果是否完整即可结束测试执行
下列叙述中正确的是
TheLostArtofListeningA)"Whywon’theevenlistentomyidea?","WhyamIcutoffbeforeIprovidethewholestory?"How
最新回复
(
0
)