首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α2=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α2=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2016-05-31
60
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,α
2
=2α
2
-α
3
,若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
因为α
2
,α
3
,α
4
线性无关和α
1
=2α
2
-α
3
,可知,向量组的秩r(α
1
,α
2
,α
3
,α
4
)=3,即矩阵A的秩为3.因此Ax=0的基础解系中只有一个向量.则由 [*] 知,Ax=0的基础解系是(1,-2,1,0)
T
又因β=α
1
+α
2
+α
3
+α
4
=(α
1
,α
2
,α
3
,α
4
),[*]则(1,1,1,1)
T
是Ax=β的一个特解.因此Ax=β的通解是k[*],其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/4GT4777K
0
考研数学三
相关试题推荐
法律作为上层建筑的重要组成部分,不是凭空出现的,而是产生于特定社会物质生活条件基础之上。在阶级社会中,决定法律性质和内容的是()。
俗话说“人闲百病生”。医学研究证明,适度的紧张有益于健康激素的分泌,这种激素能增强身体的免疫力,抵御外界的不良刺激和疾病的侵袭。这说明()。
材料1 位于长江之滨的江苏张家港,是我国犯罪率最低的城市之一。与之紧密相关的是,张家港还是首批获评全国文明城市的县级市。早在20年前,这里就以精神文明建设成就享誉全国。长期的文明浸润,涵养了这座城市的法治文化,孕育了张家港人的法治精神。 材料2
党的十九届二中全会审议通过了《中共中央关于修改宪法部分内容的建议》。这次修改宪法的总体要求是,高举中国特色社会主义伟大旗帜,全面贯彻党的十九大精神,坚持以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想、科学发展观、习近平新时代中国特色社会主义
历史证明,我国的社会主义改造是十分成功的,因为()。
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
随机试题
简述美国独立管制机构的特点。
肝藏脾藏
某公司违反《中华人民共和国证券法》的规定,应同时承担缴纳罚款、罚金和民事赔偿责任,如公司全部财产不足以全部支付的,应当()。
房源的物理属性是指房屋自身及其周边环境的物理状态。如房屋的区位、建筑外观、()、朝向、新旧程度等。
国家税收应有利于资源的有效配置和经济的有效运行,不应对经济行为产生干扰,这体现了税收的()。
()是学校社会工作者选择服务对象的最主要途径。
党的十八大报告指出,要“促进工业化、信息化、城镇化、农业现代化同步发展”。以下选项对这“四化”关系的理解正确的是()。
①赚钱文化传播两不误②文化含量高,大受欢迎③成立自己的工作室④偶尔帮外国人取中国名字⑤毕业后做外企翻译()
“以德报怨”“以柔克刚”“大智若愚”“深藏若虚”这些成语最可能源自:
Althoughsomeshoppingmallsareinneedofrecyclingormajorremodeling,thevastmajority—82percent—aredoingquitewell,th
最新回复
(
0
)