首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明r(A*)=
设A是n阶矩阵,证明r(A*)=
admin
2016-10-21
49
问题
设A是n阶矩阵,证明r(A
*
)=
选项
答案
当r(A)=n时,A可逆,从而A
*
也可逆,秩为n. 当r(A)<n-1时,它的每个余子式M
ij
(是n-1阶子式)都为0,从而代数余子式A
ij
也都为0.于是A
*
=0,r(A
*
)=0. 当r(A)=n-1时,|A|=0,所以AA
*
=0.于是r(A)+r(A
*
)≤n.由于r(A)=n-1,得到r(A
*
)≤1. 又由r(A)=n-1知道A有n-1阶非0子式,从而存在代数余子式A
hk
不为0,于是A
*
≠0,r(A
*
)>0.于是r(A
*
)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Xt4777K
0
考研数学二
相关试题推荐
求下列三角函数的不定积分。∫cos5xdx
一曲线通过点(e2,3),且在任一点处的切线斜率等于该点横坐标的倒数,求该积分曲线.
求下列的不定积分。∫(x-2)2dx
设f(x)x/(1-ex/(1-x)),求f(x)的间断点,并判断其类型.
计算,其中D是由抛物线y2=x与直线y=x所围成的区域。
设变换,求常数a.
设z=z(x,y)是由方程x2+y2-z=ψ(x+y+z)所确定的函数,其中ψ具有2阶导数且ψ’≠-1.求dz.
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]证明g’(x)是单调增加的。
设函数f(x)在(-∞,+∞内连续,其导函数的图形如图所示,则f(x)有
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)