首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x)在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P→Q表示由性质P可推出性质Q,则有 ( )
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x)在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P→Q表示由性质P可推出性质Q,则有 ( )
admin
2016-05-03
107
问题
考虑一元函数f(x)的下列4条性质:
①f(x)在[a,b]上连续;
②f(x)在[a,b]上可积;
③f(x)在[a,b]上可导;
④f(x)在[a,b]上存在原函数.
以P→Q表示由性质P可推出性质Q,则有 ( )
选项
A、①→②→③.
B、③→①→④.
C、①→②→④.
D、④→③→①.
答案
B
解析
因可导必连续,连续函数必存在原函数,故(B)正确.
(A)不正确.虽然由①(连续)可推出②(可积),但由②(可积)推不出③(可导).例如f(x)=|x|
在[一1,1]上可积,∫
—1
1
|x|dx=2∫
0
1
xdx=1.但f(x)=|x|在x=0处不可导.
(C)不正确.由②(可积)推不出④(存在原函数),例如
在[—1,1]上可积,则
∫
—1
1
f(x)dx=∫
—1
1
(—1)dx+∫
0
1
1dx=—1+1=0,
但f(x)在[—1,1]上不存在原函数.因为如果存在原函数F(x),那么只能是F(x)=|x|+C的形式,而此函数在点x=0处不可导,在区间[一1,1]上它没有做原函数的“资格”.(D)不正确.因为由④(存在原函数)推不出①(函数连续).例如:
但f(x)并不连续.即存在原函数的函数f(x)可以不连续.
转载请注明原文地址:https://kaotiyun.com/show/4mT4777K
0
考研数学三
相关试题推荐
鹦哥岭是海南省陆地面积最大的自然保护区,区内分布着完整的垂直带谱。在我国热带雨林生态系统保存上独占鳌头。这里山高路远,条件艰苦,一直难以招聘到具有较高专业素质的工作人员。 一、鹦哥岭来了大学生 自2007年起,先后有27名大学毕业生(2名博士、4名
在社会主义市场经济条件下,市场主体必须通过向社会和他人提供一定数量和质量的产品,建立满足社会和他人需求的良好信誉,即通过为社会和他人服务并为其所接受以实现自己的利益。这说明()。
恩格斯指出:“19世纪三大空想社会主义者的学说虽然含有十分虚幻和空想的性质,但他们终究是属于一切时代最伟大的智士之列的,他们天才地预示了我们现在已经科学地证明了其正确性的无数真理”。空想社会主义与科学社会主义的根本区别在于()。
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
设A,B是同阶正定矩阵,则下列命题错误的是().
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
在区间[1,e]上求一点ε,使得如图30所示的阴影部分的面积为最小.
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
已知下列齐方程组(I)(Ⅱ)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
设有定义在(-∞,+∞)上的函数:其中在定义域上连续的函数是______;
随机试题
Helentypes______.
急性糜烂性胃炎治疗不应使用
均质土坝的防渗体是()。
下列截面形状的钢筋混凝土梁中,抗弯刚度和抗扭能力大的是()。
根据《公司法》的规定,下列关于股份有限公司股份发行的表述不正确的是( )。
企业当期计提的坏账准备应该计入信用减值损失,且计提后不能转回。()
幂级数的和函数是_____.
记时器控件能有规律的以一定时间间隔触发【】事件,并执行该事件过程中的程序代码。
A、USaidprogramsin21countriesoverthenextthreeyearswillbehaltedB、USaidmissionsin21countriesoverthenextthree
A、Hesavesmuchmoneybecauseheneedn’tdrivecarortakebus.B、Hedoesn’thavetogetupontimeeveryday.C、Hecaneasilye
最新回复
(
0
)