首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x)在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P→Q表示由性质P可推出性质Q,则有 ( )
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x)在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P→Q表示由性质P可推出性质Q,则有 ( )
admin
2016-05-03
133
问题
考虑一元函数f(x)的下列4条性质:
①f(x)在[a,b]上连续;
②f(x)在[a,b]上可积;
③f(x)在[a,b]上可导;
④f(x)在[a,b]上存在原函数.
以P→Q表示由性质P可推出性质Q,则有 ( )
选项
A、①→②→③.
B、③→①→④.
C、①→②→④.
D、④→③→①.
答案
B
解析
因可导必连续,连续函数必存在原函数,故(B)正确.
(A)不正确.虽然由①(连续)可推出②(可积),但由②(可积)推不出③(可导).例如f(x)=|x|
在[一1,1]上可积,∫
—1
1
|x|dx=2∫
0
1
xdx=1.但f(x)=|x|在x=0处不可导.
(C)不正确.由②(可积)推不出④(存在原函数),例如
在[—1,1]上可积,则
∫
—1
1
f(x)dx=∫
—1
1
(—1)dx+∫
0
1
1dx=—1+1=0,
但f(x)在[—1,1]上不存在原函数.因为如果存在原函数F(x),那么只能是F(x)=|x|+C的形式,而此函数在点x=0处不可导,在区间[一1,1]上它没有做原函数的“资格”.(D)不正确.因为由④(存在原函数)推不出①(函数连续).例如:
但f(x)并不连续.即存在原函数的函数f(x)可以不连续.
转载请注明原文地址:https://kaotiyun.com/show/4mT4777K
0
考研数学三
相关试题推荐
材料1 今年脱贫攻坚任务完成后,我国将有1亿左右贫困人口实现脱贫,提前10年实现联合国2030年可持续发展议程的减贫目标,世界上没有哪一个国家能在这么短的时间内帮助这么多人脱贫,这对中国和世界都具有重大意义。国际社会对中国减贫方案是高度赞扬的。联合国秘
包含着新民主主义革命和社会主义革命的双重性质事件的是()。
资本主义经济危机周期性的物质基础是(),
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
证明:抛物面z=x2+y2+1上任一点处的切平面与曲面z=x2+y2所围成的立体的体积为一定值.
计算下列第二类曲面积分:
在区间[1,e]上求一点ε,使得如图30所示的阴影部分的面积为最小.
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
随机试题
工程现场用标准贯入试验测砂土密实度,标准锤击数为13,砂土的密实度为()。
在克服理性主义模型和渐进进主义模型的局限性的过程中,埃齐奥尼提出的综合模型叫________。
对骨折病人不应做的检查是
下列各项所有权消灭的情形中,属于因法律行为而消灭的有()。
关于福费廷业务,下列说法不正确的是()。
家用的遥控器所发出的光应该是对人体无害的紫外线,而验钞机所发出的光是红外线。()
某甲故意在某乙家的狗旁边鸣笛,致使拴在门边的狗受惊后挣脱锁链,冲出去咬伤了行人某丙,则()。
三国时,台湾称______。
系统总体设计中的模块划分应遵循若干原则,以下不属于这些原则的是______。A)数据流程图导出模块结构图B)模块内部联系紧密C)要估计模块执行时间D)模块功能单一
Therewasonethoughtthatairpollutionaffectedonlytheareaimmediatelyaroundlargecitieswithfactoriesandheavyautomob
最新回复
(
0
)